atomic force microscopy ͉ cell stiffness ͉ endothelial dysfunction ͉ eplerenone
Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (∼400 nm) and stiffness (∼0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ∼50% and stiffening by ∼130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse.
SummaryMany mucosal pathogens use type III secretion systems for the injection of effector proteins into target cells. The type III-secreted proteins EspB and EspD of enteropathogenic Escherichia coli (EPEC) are inserted into the target cell membrane. Together with EspA, these proteins are supposed to constitute a molecular syringe, channelling other effector proteins into the host cell. In this model, EspB and EspD would represent the tip of the needle forming a pore into target cell membranes. Although contact-dependent and Esp-mediated haemolytic activity by EPEC has already been described, the formation of a putative pore resulting in haemolysis has not been demonstrated so far. Here, we show that (i) diffusely adhering (DA)-EPEC strains exhibit a type III-dependent haemolytic activity too; (ii) this activity resides in the secreted proteins and, for DA-EPEC strains, in contrast to EPEC strains, does not require bacterial contact; and (iii) pores are introduced into the target cell membrane. Osmoprotection revealed a minimal pore size of 3± 5 nm. The pores induced by type III-secreted proteins of DA-EPEC were characterized by electron microscopy techniques. Analysis by atomic force microscopy demonstrated the pores to be composed of six to eight subunits with a lateral extension of 55±65 nm and to be raised 15±20 nm above the membrane plane.We could also demonstrate an association of EspB and EspD with erythrocyte membranes and an interaction of both proteins with each other in vitro. These results, together with the homologies of EspB and EspD to proposed functional domains of other poreforming proteins (Yop/Ipa), strongly support the idea that both proteins are directly involved in pore formation, which might represent the type III secretion system translocon.
We present a procedure that allows a reliable determination of the elastic (Young’s) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever’s spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions.
In the presence of aldosterone, plasma sodium in the high physiological range stiffens endothelial cells and reduces the release of nitric oxide. We now demonstrate effects of extracellular potassium on stiffness of individual cultured bovine aortic endothelial cells by using the tip of an atomic force microscope as a mechanical nanosensor. An acute increase of potassium in the physiological range swells and softens the endothelial cell and increases the release of nitric oxide. A high physiological sodium concentration, in the presence of aldosterone, prevents these changes. We propose that the potassium effects are caused by submembranous cortical fluidization because cortical actin depolymerization induced by cytochalasin D mimics the effect of high potassium. In contrast, a low dose of trypsin, known to activate sodium influx through epithelial sodium channels, stiffens the submembranous cell cortex. Obviously, the cortical actin cytoskeleton switches from gelation to solation depending on the ambient sodium and potassium concentrations, whereas the center of the cell is not involved. Such a mechanism would control endothelial deformability and nitric oxide release, and thus influence systemic blood pressure.aldosterone ͉ blood pressure ͉ cortical actin ͉ epithelial sodium channel ͉ stiffness
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.