Abstract. During three measurement campaigns on the Baltic and North Seas, atmospheric and dissolved methane was determined with an automated gas chromatographic system. Areaweighted mean saturation values in the sea surface waters were 113 + 5% and 395 + 82% (Baltic Sea, February and July 1992) and 126 + 8% (south central North Sea, September 1992). On the bases of our data and a compilation of literature data the global oceanic emissions of methane were reassessed by introducing a concept of regional gas transfer coefficients. Our estimates computed with two different air-sea exchange models lie in the range of 11-18 Tg CH 4 yr -•.Despite the fact that shelf areas and estuaries only represent a small part of the world's ocean they contribute about 75% to the global oceanic emissions. We applied a simple, coupled, threelayer model to evaluate the time dependent variation of the oceanic flux to the atmosphere. The model calculations indicate that even with increasing tropospheric methane concentration, the ocean will remain a source of atmospheric methane.
Abstract. Ocean observations are analysed in the framework of Collaborative Research Center 754 (SFB 754) "ClimateBiogeochemistry Interactions in the Tropical Ocean" to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m in depth with its core region centred at about 20 • W, 10 • N and a shallow OMZ at about 100 m in depth, with the lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60 %) and vertical mixing (about 20 %, locally up to 30 %). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10 % of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal timescales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ, the eastern tropical South Pacific OMZ shows a similar structure, including an equatorial oxygen maximum driven by zonal advection but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
Abstract. We review here the available information on methane (CH 4 ) and nitrous oxide (N 2 O) from major marine, mostly coastal, oxygen (O 2 )-deficient zones formed both naturally and as a result of human activities (mainly eutrophication). Concentrations of both gases in subsurface waters are affected by ambient O 2 levels to varying degrees. Organic matter supply to seafloor appears to be the primary factor controlling CH 4 production in sediments and its supply to (and concentration in) overlying waters, with bottom-water O 2 -deficiency exerting only a modulating effect. High (micromolar level) CH 4 accumulation occurs in anoxic (sulphidic) waters of silled basins, such as the Black Sea and Cariaco Basin, and over the highly productive Namibian shelf. In other regions experiencing various degrees of O 2 -deficiency (hypoxia to anoxia), CH 4 concentrations vary from a few to hundreds of nanomolar levels. Since coastal O 2 -deficient zones are generally very productive and are sometimes located close to river mouths and submarine hydrocarbon seeps, it is difficult to differentiate any O 2 -deficiency-induced enhancement from in situ production of CH 4 in the water column and its inputs through freshwater runoff or seepage from sediments. While the role of bottom-water O 2 -deficiency in CH 4 formation appears to be secondary, even when CH 4 accumulates in O 2 -deficient subsurface waters, methanotrophic activity severely restricts its diffusive efflux to the atmosphere. As a result, an intensification or expansion of coastal O 2 -deficient zones will probably Correspondence to: S. W. A. Naqvi (naqvi@nio.org) not drastically change the present status where emission from the ocean as a whole forms an insignificant term in the atmospheric CH 4 budget. The situation is different for N 2 O, the production of which is greatly enhanced in low-O 2 waters, and although it is lost through denitrification in most suboxic and anoxic environments, the peripheries of such environments offer most suitable conditions for its production, with the exception of enclosed anoxic basins. Most O 2 -deficient systems serve as strong net sources of N 2 O to the atmosphere. This is especially true for coastal upwelling regions with shallow O 2 -deficient zones where a dramatic increase in N 2 O production often occurs in rapidly denitrifying waters. Nitrous oxide emissions from these zones are globally significant, and so their ongoing intensification and expansion is likely to lead to a significant increase in N 2 O emission from the ocean. However, a meaningful quantitative prediction of this increase is not possible at present because of continuing uncertainties concerning the formative pathways to N 2 O as well as insufficient data from key coastal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.