This paper reports a short review on the impact of poisoning effects and thermal aging on the reactivity of surface vanadate species on benchmark V2O5−WO3/TiO2 Selective‐Catalytic‐Reduction catalysts. A renewed interest of this SCR technology is related to its diversification notably as after‐treatment systems to treat the exhaust from Diesel engines with higher running temperature especially when SCR catalysts are coated on Diesel Particulates Filters. Particular attention is also paid to poisoning effects in conjunction with the progressive replacement of fossil fuels by bio‐fuels containing alkaline contaminants which drastically deactivate the catalyst through neutralization of strong acid sites. Most of the investigations show that better insight into the mechanisms of poisoning and aging processes is needed especially to understand the relative sensibility of various vanadate species. This could provide original guidelines to catalyst preparation and or the developments of more stable bulk systems as exemplified.
A renewed interest of benchmark V2O5/WO3/TiO2 SCR-catalysts is discernible for the depollution of stationary sources jointly with the use of bio-fuels as substitute to fossil fuels. However, the resistance to deactivation has to be reconsidered according to additional alkaline contamination. This study tried to elucidate the impact of potassium on the stability of vanadate and tungstate species at various dispersions for two different K/V ratios equal to 0.2 and 0.8. Different kinetic behaviors of fresh and K-poisoned catalysts have been discussed based on the affinity of potassium to neutralize preferentially strong acid sites as well as to alter the capability of V=O redox sites.
The SCR performance of V2O5-WO3/TiO2 SCR-catalysts characterized by different surface W density (2.1W/nm2 and 9.5W/nm2) and different surface V density varying in the range 1–8V/nm2 has been investigated in order to clarify existing controversies on the preferential involvement of electronic and geometric effects in the catalytic properties. It was found that tungsten has a weak effect on the VOx cluster size distribution through contraction of dilution effect. In contrast, the optimal interaction between W and V, when both reach their highest composition, appears to be a relevant parameter that can enhance their acidic properties and improve the catalytic efficiency in dry conditions. On the other hand, an absence of significant interaction leads to discontinuity due to deactivation. In the presence of steam, acidic properties are averaged, lowering the impact of the V to W ratio. Finally, the critical importance of acidic properties which outperform redox properties in the definition of active site is pointed out in the light of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.