a b s t r a c tDiabetic foot ulcers (DFUs) are a chronic, non-healing complication of diabetes that lead to high hospital costs and, in extreme cases, to amputation. Diabetic neuropathy, peripheral vascular disease, abnormal cellular and cytokine/chemokine activity are among the main factors that hinder diabetic wound repair. DFUs represent a current and important challenge in the development of novel and efficient wound dressings. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, remove wound exudate and promote tissue regeneration. However, no existing dressing fulfills all the requirements associated with DFU treatment and the choice of the correct dressing depends on the wound type and stage, injury extension, patient condition and the tissues involved. Currently, there are different types of commercially available wound dressings that can be used for DFU treatment which differ on their application modes, materials, shape and on the methods employed for production. Dressing materials can include natural, modified and synthetic polymers, as well as their mixtures or combinations, processed in the form of films, foams, hydrocolloids and hydrogels. Moreover, wound dressings may be employed as medicated systems, through the delivery of healing enhancers and therapeutic substances (drugs, growth factors, peptides, stem cells and/or other bioactive substances). This work reviews the state of the art and the most recent advances in the development of wound dressings for DFU treatment. Special emphasis is given to systems employing new polymeric biomaterials, and to the latest and innovative therapeutic strategies and delivery approaches.
Since determining experimentally a wide variety of thermophysical properties-even for a very small portion of the already known room temperature ionic liquids (and their mixtures and solutions)-is an impossible goal, it is imperative that reliable predictive methods be developed. In turn, these methods might offer us clues to understanding the underlying ion-ion and ion-molecule interactions. 1-Butyl-3-methylimidazolium tetrafluoroborate, one of the most thoroughly investigated ionic liquids, together with water, the greenest of the solvents, have been chosen in this work in order to use their mixtures as a case study to model other, greener, ionic liquid aqueous solutions. We focus our attention both on very simple methodologies that permit one to calculate accurately the mixture's molar volumes and heat capacities as well as more sophisticated theories to predict excess properties, pressure and isotope effects in the phase diagrams, and anomalies in some response functions to criticality, with a minimum of information. In regard to experimental work, we have determined: (a) densities as a function of temperature (278.15 < T/K < 333.15), pressure (1 < p/bar < 600), and composition (0 < x IL < 1), thus also excess molar volumes; (b) heat capacities and excess molar enthalpies as a function of temperature (278.15 < T/K < 333.15) and composition (0 < x IL < 1); and (c) liquid-liquid phase diagrams and their pressure (1 < p/bar < 700) and isotopic (H 2 O/D 2 O) dependences. The evolution of some of the aforementioned properties in their approach to the critical region has deserved particular attention.
Aqueous solutions of a copolymer derivative of a polyacrylamide showed very interesting behavior, that in which the system evolves from one kind of double criticality (pressure-hypercritical point) to another (temperature-hypercritical point) as polymer molecular weight decreases. While in the neighboring region of the former point one expects a change from contraction to expansion upon mixing with increasing pressure; in the latter, mixing should be accompanied by a change in the sign of the excess enthalpy as temperature increases. L-L equilibria studies were performed in a wide range of (T, p) experimental conditions (300 < T/K < 460, 0 < p/bar < 700). Poly(N-isopropylacrylamide), usually called PNIPAAM, and its copolymer derivative poly(N-isopropylacrylamide/1-deoxy-1-methacrylamido-D-glucitol), herein referred to as CP, were investigated for several chain lengths and compositions. An He/Ne laser light scattering technique was used for the determination of cloud-point (T, p, x) conditions. The experimental results were used to assist in the determination of computed values at temperatures beyond experimental accessibility, which are obtained by the application of a modified Flory-Huggins model. The model also estimates the excess properties of these solutions. Because of the intrinsic selfassociating nature of these systems, all studied solutions show a lower critical solution temperature (LCST). Both modeling results and H/D isotope substitution effects suggest also the existence of upper critical solution temperatures (UCST) and therefore closed-loop-type phase diagrams. However, these upper-temperature branches are experimentally inaccessible. Pressure effects are particularly interesting. For a low-MW CP, experimental data display a tendency toward a reentrant T-p locus, which supports the conjecture that these systems are inherently of the closed-loop type. In the cases of PNIPAAMs and high-MW CPs, the T-p isopleths show extrema. The copolymer aqueous solutions under study in this work model a single chemical system where pressure-hypercritical behavior evolves to a temperaturehypercritical one as the chain length decreases.
Liquid-liquid phase splitting in ternary mixtures that contain a room-temperature ionic liquid and an alcohol aqueous solutionsnamely, [bmim] [PF 6 ] + ethanol + water and [bmim][NTf 2 ] + 2-methylpropanol + waters is studied. Experimental cloud-point temperatures were obtained up to pressures of 400 bar, using a He-Ne laser light-scattering technique. Although pressurization favors mutual miscibility in the presence of high concentrations of alcohols, the contrary occurs in water-rich solutions. Both ternary mixtures exhibit a very pronounced water-alcohol co-solvent effect. Solvent isotope effects are also investigated. Phase diagrams are discussed using a phenomenological approach based on a "polymer-like" G E model coupled with the statistical-mechanical theory of isotope effects. The combined effect of a red shift of -15 cm -1 for the O-H deformation mode of ethanol with a blue shift of +35 cm -1 for the O-H stretching mode, both of which occurring after liquid infinite dilution in the ionic liquid, rationalizes the observed isotope effect in the phase diagram. Predicted excess enthalpy (H E ) values are inferred from the model parameters. Furthermore, using the Prigogine-Defay equation, an estimation of the excess volumes (V E ) is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.