Today LED technology is being imposed, day by day, in our cities and homes as an efficient way of lighting. The performance of its lighting, durability, energy efficiency, and light, coupled with the economy of its use, is shifting to other classic forms of lighting. However, some problems associated with the durability of equipment associated with thermal dissipation and high-temperature problems, which end up affecting the light intensity and service life, are beginning to be detected. The objective of this paper is to compare the results obtained previously, at different contour temperatures, with the current practical results obtained with a FLUKETI25 thermal imaging camera. The theoretical results will be compared with the current results applied to the different luminaires. Where real thermal dissipation is studied, it is obtained for each of them in the laboratory of illumination with the thermographic camera FLUKE TI. The theoretical and experimental results are evaluated, and the results are discussed. This study shows that instead of LED technology, it is less risky for quality depreciation and durability of lighting if a project has already been achieved that favors optimal thermal dissipation, supported by the importance of choosing an appropriate design and appropriate materials.
The requirements concerning the energy certification of buildings established in Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002, which was in turn modified by Directive 2010/31/EU of the European Parliament and of the Council, of 19 May 2010, regarding the energy efficiency of buildings, were transposed into Spanish legislation through Royal Decree 47/2007, dated January 19, through which a Basic Procedure for certification was approved of energy efficiency of new buildings, which was consolidated by Royal Decree 235/2013, of April 5, which approves the basic procedure for the certification of the energy efficiency of buildings. In said Royal Decree, it is established that existing buildings or units of buildings occupied by a public authority, must obtain an energy efficiency certificate and will have the obligation to display their energy efficiency label, when their total useful area exceeds 250 m2, and are usually frequented by the public. The Basic Procedure is established that must comply with the methodology for calculating the energy efficiency rating, considering those factors that have the greatest impact on their energy consumption, as well as the technical and administrative conditions for the energy efficiency certifications of the buildings. For this purpose, three software programs were promoted from the competent Ministry, one corresponding to the general option (LIDER-CALENER “HULC” unified tool) and two others corresponding to the simplified option (simplified procedures CE3 and CE3X), which allow the energy qualification to be carried out of buildings according to three types of buildings (residential, small and medium-sized tertiary, and large tertiary) that are increasing the requirements of the energy certification of the building depending on the type of the same. This study identifies the possible alternatives for improving energy efficiency over the initial qualification of the building, within a context of technical and economic feasibility, optimizing energy demand, reducing CO2 emissions and building energy consumption, being The study also compares the results obtained in the energy rating, between the general option and the simplified procedures, on an Andalusian health center in 1957, which corresponds to the typology of the Grand Tertiary building (GT).
Growing technological development causes industrial products to be discontinued and consequently replaced with greater advancements. [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.