Abstract. This work proposes a method to control the dominance area of solutions in order to induce appropriate ranking of solutions for the problem at hand, enhance selection, and improve the performance of MOEAs on combinatorial optimization problems. The proposed method can control the degree of expansion or contraction of the dominance area of solutions using a user-defined parameter S. Modifying the dominance area of solutions changes their dominance relation inducing a ranking of solutions that is different to conventional dominance. In this work we use 0/1 multiobjective knapsack problems to analyze the effects on solutions ranking caused by contracting and expanding the dominance area of solutions and its impact on the search performance of a multiobjective optimizer when the number of objectives, the size of the search space, and the complexity of the problems vary. We show that either convergence or diversity can be emphasized by contracting or expanding the dominance area. Also, we show that the optimal value of the area of dominance depends strongly on all factors analyzed here: number of objectives, size of the search space, and complexity of the problems.
We expose and contrast the impact of landscape characteristics on the performance of search heuristics for black-box multi-objective combinatorial optimization problems. A sound and concise summary of features characterizing the structure of an arbitrary problem instance is identified and related to the expected performance of global and local dominancebased multi-objective optimization algorithms. We provide a critical review of existing features tailored to multi-objective combinatorial optimization problems, and we propose additional ones that do not require any global knowledge from the landscape, making them suitable for large-size problem instances. Their intercorrelation and their association with algorithm performance are also analyzed. This allows us to assess the individual and the joint effect of problem features on algorithm performance, and to highlight the main difficulties encountered by such search heuristics. By providing effective tools for multiobjective landscape analysis, we highlight that multiple features are required to capture problem difficulty, and we provide further insights into the importance of ruggedness and multimodality to characterize multi-objective combinatorial landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.