An important issue in the study of cities is defining a metropolitan area, because different definitions affect conclusions regarding the statistical distribution of urban activity. A commonly employed method of defining a metropolitan area is the Metropolitan Statistical Areas (MSAs), based on rules attempting to capture the notion of city as a functional economic region, and it is performed by using experience. The construction of MSAs is a time-consuming process and is typically done only for a subset (a few hundreds) of the most highly populated cities. Here, we introduce a method to designate metropolitan areas, denoted "City Clustering Algorithm" (CCA). The CCA is based on spatial distributions of the population at a fine geographic scale, defining a city beyond the scope of its administrative boundaries. We use the CCA to examine Gibrat's law of proportional growth, which postulates that the mean and standard deviation of the growth rate of cities are constant, independent of city size. We find that the mean growth rate of a cluster by utilizing the CCA exhibits deviations from Gibrat's law, and that the standard deviation decreases as a power law with respect to the city size. The CCA allows for the study of the underlying process leading to these deviations, which are shown to arise from the existence of long-range spatial correlations in population growth. These results have sociopolitical implications, for example, for the location of new economic development in cities of varied size.scaling | statistical analysis | urban growth
We explore the concepts of self-similarity, dimensionality, and (multi)scaling in a new family of recursive scale-free nets that yield themselves to exact analysis through renormalization techniques. All nets in this family are self-similar and some are fractals -possessing a finite fractal dimensionwhile others are small world (their diameter grows logarithmically with their size) and are infinitedimensional. We show how a useful measure of transfinite dimension may be defined and applied to the small world nets. Concerning multiscaling, we show how first-passage time for diffusion and resistance between hubs (the most connected nodes) scale differently than for other nodes. Despite the different scalings, the Einstein relation between diffusion and conductivity holds separately for hubs and nodes. The transfinite exponents of small world nets obey Einstein relations analogous to those in fractal nets.
The distribution of city populations has attracted much attention, in part because it constrains models of local growth. However, there is no consensus on the distribution below the very upper tail, because available data need to rely on "legal" rather than "economic" definitions for medium and small cities. To remedy this difficulty, we construct cities "from the bottom up" by clustering populated areas obtained from high-resolution data. We find that Zipf's law for population holds for cities as small as 5,000 inhabitants in Great Britain and 12,000 inhabitants in the US. We also find a Zipf's law for areas. JEL: R11, R12, R23
We show that renormalization group (RG) theory applied to complex networks is useful to classify network topologies into universality classes in the space of configurations. The RG flow readily identifies a small-world-fractal transition by finding (i) a trivial stable fixed point of a complete graph, (ii) a nontrivial point of a pure fractal topology that is stable or unstable according to the amount of long-range links in the network, and (iii) another stable point of a fractal with shortcuts that exist exactly at the small-world-fractal transition. As a collateral, the RG technique explains the coexistence of the seemingly contradicting fractal and small-world phases and allows us to extract information on the distribution of shortcuts in real-world networks, a problem of importance for information flow in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.