We present a new matrix vector formulation of a wavelet-based subband decomposition. This formulation allows for the decomposition of both the convolution operator and the signal in the subband domain. With this approach, any single channel linear space-invariant filtering problem can be cast into a multichannel framework. We apply this decomposition to the linear space-invariant image restoration problem and propose a family of multichannel linear minimum mean square error (LMMSE) restoration filters. These filters explicitly incorporate both within and between subband (channel) relations of the decomposed image. Since only within channel stationarity is assumed in the image model, this approach presents a new method for modeling the nonstationarity of images. Experimental results are presented which test the proposed multichannel LMMSE filters. These experiments show that if accurate estimates of the subband statistics are available, the proposed multichannel filters provide major improvements over the traditional single channel filters.
This paper proposes a Track-before-Detect framework for a multibody motion segmentation (named TbD-SfM). Our contribution relies on a tightly coupled tracking before detection strategy intended to reduce the complexity of existing Multibody Structure from Motion approaches. Efforts were done towards an algorithm variant closer and aimed to a further embedded implementation for dynamic scene analysis while enhancing processing time performances. This generic motion segmentation approach can be transposed to several transportation sensor systems since no constraints are considered on segmented motions (6-DOF model). The tracking scheme is analyzed and its performance is evaluated under thorough experimental conditions including full-scale driving scenarios from known and available datasets. Results on challenging scenarios including the presence of multiple and simultaneous moving objects observed from a moving camera are reported and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.