This paper presents a control system design strategy for multivariable plants where the controller, sensors and actuators are connected via a digital, data-rate limited, communications channel. In order to minimize bandwidth utilization, a communication constraint is imposed which restricts all transmitted data to belong to a finite set and only permits one plant to be addressed at a time. We emphasize implementation issues and employ moving horizon techniques to deal with both control and measurement quantization issues. We illustrate the methodology by simulations and a laboratory-based pilot-scale study.
This paper addresses the stabilisation of discrete-time switching linear systems (DTSSs) with control inputs under arbitrary switching, based on the existence of a common quadratic Lyapunov function (CQLF). The authors have begun a line of work dealing with control design based on the Lie-algebraic solvability property. The present paper expands on earlier work by deriving sufficient conditions under which the closed-loop system can be caused to satisfy the Lie-algebraic solvability property generically, i.e. for almost every set of system parameters, furthermore admitting straightforward and efficient numerical implementation.
We present a novel ultimate bound and invariant set computation method for continuous-time switched linear systems with disturbances and arbitrary switching. The proposed method relies on the existence of a transformation that takes all matrices of the switched linear system into a convenient form satisfying certain properties. The method provides ultimate bounds and invariant sets in the form of polyhedral and/or mixed ellipsoidal/polyhedral sets, is completely systematic once the aforementioned transformation is obtained, and provides a new sufficient condition for practical stability. We show that the transformation required by our method can easily be found in the well-known case where the subsystem matrices generate a solvable Lie algebra, and we provide an algorithm to seek such transformation in the general case. An example comparing the bounds obtained by the proposed method with those obtained from a common quadratic Lyapunov function computed via linear matrix inequalities shows a clear advantage of the proposed method in some cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.