The importance of immunoproteasomes to antigen presentation has been unclear because animals totally lacking immunoproteasomes have not been previously developed. Here we show that dendritic cells from mice lacking the three immunoproteasome catalytic subunits display defects in presenting multiple major histocompatability (MHC) class I epitopes. During viral infection in vivo, the presentation of a majority of MHC class I epitopes is markedly reduced in immunoproteasome-deficient animals, while presentation of MHC class II peptides is unaffected. By mass spectrometry the repertoire of MHC class I-presented peptides is ~50% different and these differences are sufficient to stimulate robust transplant rejection of wild type cells in mutant mice. These results indicate that immunoproteasomes play a much more important role in antigen presentation than previously thought.
The MHC class I (MHC-I) molecules ferry a cargo of peptides to the cell surface as potential ligands for CD8+ cytotoxic T cells. For nearly 20 years, the cargo has been described as a collection of short 8-9 mer peptides, whose length and sequences were believed to be primarily determined by the peptide-binding groove of MHC-I molecules. Yet the mechanisms for producing peptides of such optimal length and composition have remained unclear. In this study, using mass spectrometry, we determined the amino acid sequences of a large number of naturally processed peptides in mice lacking the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). We find that ERAAP-deficiency changed the oeuvre and caused a marked increase in the length of peptides normally presented by MHC-I. Furthermore, we observed similar changes in the length of viral peptides recognized by CD8+ T cells in mouse CMV-infected ERAAP-deficient mice. In these mice, a distinct CD8+ T cell population was elicited with specificity for an N-terminally extended epitope. Thus, the characteristic length, as well as the composition of MHC-I peptide cargo, is determined not only by the MHC-I peptide-binding groove but also by ERAAP proteolysis in the endoplasmic reticulum.
The majority of >2000 HLA class I molecules can be clustered according to overlapping peptide binding specificities or motifs recognized by CD8 ؉ T cells. HLA class I motifs are classified based on the specificity of residues located in the P2 and the C-terminal positions of the peptide. However, it has been suggested that other positions might be relevant for peptide binding to HLA class I molecules and therefore be used for further characterization of HLA class I motifs. In this study we performed large-scale sequencing of endogenous peptides eluted from K562 cells (HLA class I null) made to express a single HLA molecule from HLA-B*3501, -B*3502, -B*3503, -B*3504, -B*3506, or -B*3508. Using sequence data from >1,000 peptides, we characterized novel peptide motifs that include dominant anchor residues extending to all positions in the peptide. The length distribution of HLA-B35-bound peptides included peptides of up to 15 residues. Remarkably, we determined that some peptides longer than 11 residues represented N-terminal-extended peptides containing an appropriate HLA-B35 peptide motif. These results provide evidence for the occurrence of endogenous N-terminal-extended peptide-HLA class I configurations. In addition, these results expand the knowledge about the identity of anchor positions in HLA class I-associated peptides that can be used for characterization of HLA class I motifs.
Summary HLA-DM is essential for editing peptides bound to MHC class II, thus influencing the repertoire of peptides mediating selection and activation of CD4+ T cells. Individuals expressing HLA-DQ2 or DQ8, and DQ2/8 trans-dimers, have elevated risk for type 1 diabetes (T1D). Cells co-expressing DM with these DQ molecules were observed to express elevated levels of CLIP (Class II associated invariant chain peptide). Relative resistance to DM-mediated editing of CLIP was further confirmed by HPLC-MS/MS analysis of eluted peptides, which also demonstrated peptides from known T1D-associated autoantigens, including a shared epitope from ZnT8 that is presented by all four major T1D-susceptible DQ molecules. Assays with purified recombinant soluble proteins confirmed that DQ2-CLIP complexes are highly resistant to DM editing, whereas DQ8-CLIP is partially sensitive to DM, but with an apparent reduction in catalytic potency. DM sensitivity was enhanced in mutant DQ8 molecules with disruption of hydrogen bonds that stabilize DQ8 near the DM-binding region. Our findings show that T1D-susceptible DQ2 and DQ8 share significant resistance to DM editing, compared with control DQ molecules. The relative resistance of the T1D-susceptible DQ molecules to DM editing and preferential presentation of T1D-associated autoantigenic peptides may contribute to the pathogenesis of T1D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.