The possibility of performing data assimilation using the flow-dependent statistics calculated from an ensemble of short-range forecasts (a technique referred to as ensemble Kalman filtering) is examined in an idealized environment. Using a three-level, quasigeostrophic, T21 model and simulated observations, experiments are performed in a perfect-model context. By using forward interpolation operators from the model state to the observations, the ensemble Kalman filter is able to utilize nonconventional observations. In order to maintain a representative spread between the ensemble members and avoid a problem of inbreeding, a pair of ensemble Kalman filters is configured so that the assimilation of data using one ensemble of shortrange forecasts as background fields employs the weights calculated from the other ensemble of short-range forecasts. This configuration is found to work well: the spread between the ensemble members resembles the difference between the ensemble mean and the true state, except in the case of the smallest ensembles. A series of 30-day data assimilation cycles is performed using ensembles of different sizes. The results indicate that (i) as the size of the ensembles increases, correlations are estimated more accurately and the root-meansquare analysis error decreases, as expected, and (ii) ensembles having on the order of 100 members are sufficient to accurately describe local anisotropic, baroclinic correlation structures. Due to the difficulty of accurately estimating the small correlations associated with remote observations, a cutoff radius beyond which observations are not used, is implemented. It is found that (a) for a given ensemble size there is an optimal value of this cutoff radius, and (b) the optimal cutoff radius increases as the ensemble size increases.
An ensemble Kalman filter may be considered for the 4D assimilation of atmospheric data. In this paper, an efficient implementation of the analysis step of the filter is proposed. It employs a Schur (elementwise) product of the covariances of the background error calculated from the ensemble and a correlation function having local support to filter the small (and noisy) background-error covariances associated with remote observations. To solve the Kalman filter equations, the observations are organized into batches that are assimilated sequentially. For each batch, a Cholesky decomposition method is used to solve the system of linear equations. The ensemble of background fields is updated at each step of the sequential algorithm and, as more and more batches of observations are assimilated, evolves to eventually become the ensemble of analysis fields. A prototype sequential filter has been developed. Experiments are performed with a simulated observational network consisting of 542 radiosonde and 615 satellite-thickness profiles. Experimental results indicate that the quality of the analysis is almost independent of the number of batches (except when the ensemble is very small). This supports the use of a sequential algorithm. A parallel version of the algorithm is described and used to assimilate over 100 000 observations into a pair of 50-member ensembles. Its operation count is proportional to the number of observations, the number of analysis grid points, and the number of ensemble members. In view of the flexibility of the sequential filter and its encouraging performance on a NEC SX-4 computer, an application with a primitive equations model can now be envisioned.
An ensemble Kalman filter (EnKF) has been implemented for atmospheric data assimilation. It assimilates observations from a fairly complete observational network with a forecast model that includes a standard operational set of physical parameterizations. To obtain reasonable results with a limited number of ensemble members, severe horizontal and vertical covariance localizations have been used. It is observed that the error growth in the data assimilation cycle is mainly due to model error. An isotropic parameterization, similar to the forecast-error parameterization in variational algorithms, is used to represent model error. After some adjustment, it is possible to obtain innovation statistics that agree with the ensemble-based estimate of the innovation amplitudes for winds and temperature. Currently, no model error is added for the humidity variable, and, consequently, the ensemble spread for humidity is too small. After about 5 days of cycling, fairly stable global filter statistics are obtained with no sign of filter divergence. The quality of the ensemble mean background field, as verified using radiosonde observations, is similar to that obtained using a 3D variational procedure. In part, this is likely due to the form chosen for the parameterized model error. Nevertheless, the degree of similarity is surprising given that the background-error statistics used by the two procedures are rather different, with generally larger background errors being used by the variational scheme. A set of 5-day integrations has been started from the ensemble of initial conditions provided by the EnKF. For the middle and lower troposphere, the growth rates of the perturbations are somewhat smaller than the growth rate of the actual ensemble mean error. For the upper levels, the perturbation patterns decay for about 3 days as a consequence of diffusive model dynamics. These decaying perturbations tend to severely underestimate the actual error that grows rapidly near the model top.
The ensemble Kalman filter (EnKF) has been proposed for operational atmospheric data assimilation. Some outstanding issues relate to the required ensemble size, the impact of localization methods on balance, and the representation of model error.To investigate these issues, a sequential EnKF has been used to assimilate simulated radiosonde, satellite thickness, and aircraft reports into a dry, global, primitive-equation model. The model uses the simple forcing and dissipation proposed by Held and Suarez. It has 21 levels in the vertical, includes topography, and uses a 144 ϫ 72 horizontal grid. In total, about 80 000 observations are assimilated per day.It is found that the use of severe localization in the EnKF causes substantial imbalance in the analyses. As the distance of imposed zero correlation increases to about 3000 km, the amount of imbalance becomes acceptably small.A series of 14-day data assimilation cycles are performed with different configurations of the EnKF. Included is an experiment in which the model is assumed to be perfect and experiments in which model error is simulated by the addition of an ensemble of approximately balanced model perturbations with a specified statistical structure.The results indicate that the EnKF, with 64 ensemble members, performs well in the present context.The growth rate of small perturbations in the model is examined and found to be slow compared with the corresponding growth rate in an operational forecast model. This is partly due to a lack of horizontal resolution and partly due to a lack of realistic parameterizations. The growth rates in both models are found to be smaller than the growth rate of differences between forecasts with the operational model and verifying analyses. It is concluded that model-error simulation would be important, if either of these models were to be used with the EnKF for the assimilation of real observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.