Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly.
Many decellularized extracellular matrix-derived whole organs have been widely used in studies of tissue engineering and cancer models. However, decellularizing porcine esophagus to obtain decellularized esophageal matrix (DEM) for potential biomedical applications has not been widely investigated. In this study a modified decellularization protocol was employed to prepare a porcine esophageal DEM for the study of cancer cell growth. The cellular removal and retention of matrix components in the porcine DEM were fully characterized. The microstructure of the DEM was observed using scanning electronic microscopy. Human esophageal squamous cell carcinoma (ESCC) and human primary esophageal fibroblast cells (FBCs) were seeded in the DEM to observe their growth. Results show that the decellularization process did not cause significant loss of mechanical properties and that blood ducts and lymphatic vessels in the submucosa layer were also preserved. ESCC and FBCs grew on the DEM well and the matrix did not show any toxicity to cells. When FBS and ESCC were cocultured on the matrix, they secreted more periostin, a protein that supports cell adhesion on matrix. This study shows that the modified decellularization protocol can effectively remove the cell materials and maintain the microstructure of the porcine esophageal matrix, which has the potential application of studying cell growth and migration for esophageal cancer models.
Dysregulation of sleep is associated with metabolic diseases, and metabolic rate is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and metabolic rate in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, metabolic rate in flies is reduced during sleep and increased during sleep deprivation suggesting sleepdependent regulation of metabolic rate is conserved across phyla. The reduction of metabolic rate during sleep is not simply a consequence of inactivity because metabolic rate is reduced ~30 minutes following the onset of sleep, raising the possibility that CO 2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in metabolic rate is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in metabolic rate and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly.Keywords: Drosophila, metabolism, respirometry, calorimetry, sleep . CC-BY 4.0 International license It is made available under a was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/124198 doi: bioRxiv preprint first posted online Apr. 4, 2017; 3 Significance statementMetabolic disorders are associated with sleep disturbances, yet our understanding of the mechanisms underlying interactions between sleep and metabolism remain limited. Here, we describe a novel system to simultaneously record sleep and metabolic rate in single Drosophila. Our findings reveal that uninterrupted sleep bouts of 30 minutes or greater are associated with a reduction in metabolic rate providing a physiological readout of sleep. Use of this system, combined with existing genetic tools in Drosophila, will facilitate identification of novel sleep genes and neurons, with implications for understanding the relationship between sleep loss and metabolic disease.. CC-BY 4.0 International license It is made available under a was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Early recanalization of the occluded vessel is the only efficient intervention that improves outcome after ischemic stroke. In contrast, interventions for chronic issues facing stroke patients are limited. Recent clinical and preclinical studies have shown a correlation between upregulated immune responses to brain antigens and post-stroke recrudescence (PSR), post-stroke fatigue (PSF), and dementia (PSD); all of which are associated with poor long-term stroke outcome. Recent retrospective studies have demonstrated a strong correlation between the onset of PSR and acute infection during acute stroke, suggesting some adaptive immune system mediated pathology. This review will discuss the mechanisms and epidemiology of PSR based on the current clinical and pre-clinical evidence. Accordingly, PSR does appear correlated with populations that are prone to autoimmunity, infection, and subsequent triggers, which corroborate autoimmune responses to self-brain antigens as an underlying mechanism. Moreover, PSR as well as PSF and PSD seem to be partly explained by the development of a neuro-inflammatory response to brain antigens. Therefore, the future of improving long-term stroke outcome could be bright with more accurate pre-clinical models focusing on the role of adaptive immune-mediated post stroke neuroinflammation and more clinical studies of PSR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.