The Clostridium acetobutylicum gene Ca-SacB encoding levansucrase was cloned and expressed in Escherichia coli. Ca-SacB is composed of 1287 bp and encodes 428 amino acid residues, which could convert 150 mmol/L sucrose to levan with the liberation of glucose. The optimum pH and temperature of this enzyme for levan formation were pH 6 and 60 °C, respectively. Levansucrase activity of Ca-SacB was completely abolished by 5 mmol/L Ag and Hg. The K and V values for levansucrase were calculated to be 64 mmol/L and 190 μmol/min/mg, respectively. Interestingly, Ca-SacB was found to have high product specificity, and no fructooligosaccharide was identified in the product, indicating that Ca-SacB may be valuable for industrial production of levan. In addition, Ca-SacB is the first characterized levansucrase isolated from an anaerobic bacterium, which should be valuable for exploring new enzyme resources and deepening the understanding of the catalytic mechanisms of levansucrases.
We have constructed novel plasmids pANY2, pANY3, and pANY6 for flexible cloning with low false positives, efficient expression, and convenient purification of proteins. The pANY2 plasmid can be used for efficient isopropyl-β-d-thiogalactoside (IPTG) induced protein expression, while the pANY3 plasmid can be used for temperature-induced expression. The pANY6 plasmid contains a self-cleaving elastin-like protein (ELP) tag for purification of recombinant protein by simple ELP-mediated precipitation steps and removal of the ELP tag by self-cleavage. A urea-based denaturation and refolding processes for renaturation of insoluble inclusion bodies can be conveniently integrated into the ELP-mediated precipitation protocol, removing time-consuming dialysis steps. These novel vectors, together with the described strategies of gene cloning, protein expression, and purification, may have wide applications in biosciences, agricultural, food technologies, and so forth.
In this study, some novel plasmids have been constructed for flexible and zero-background molecular cloning, more efficient expression, and purification of proteins with improved strategies. The plasmids pANY4-pL18-ccdB and pANY4-pR18/ pL18-ccdB have different promoters in the complementary DNA strands. Therefore, recombinant plasmids for either isopropyl-β-Dthiogalactoside-induced or temperature-induced protein expression could be simultaneously constructed in a single molecular cloning process for parallel comparison. Intriguingly, the mutated pL18 and pR18/pL18 promoters performed similar to or even better than the T7 promoter when used for promoting the expression of the GFP or pfLamA enzyme. Moreover, the plasmid pANY8 containing the His-elastin-like polypeptide (ELP)-intein multifunctional tag was constructed, and special purification protocol was designed to obtain purified proteins without the requirement of time-consuming dialysis steps to remove imidazole and high concentration of salt ions. Additionally, the urea-based denaturation and refolding processes can be conveniently integrated into the ELP-mediated precipitation protocol for purification of insoluble inclusion bodies, omitting the time-consuming dialysis steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.