Zika virus (ZIKV) is an emerging teratogenic arbovirus that persists in semen and is sexually transmitted. We previously demonstrated that ZIKV infects the human testis and persists in testicular germ cells (TGCs) for several months after patients’ recovery. To decipher the mechanisms underlying prolonged ZIKV replication in TGCs, we compared the innate immune response of human testis explants and isolated TGCs to ZIKV and to Poly(I:C), a viral RNA analog. Our results demonstrate the weak innate responses of human testis to both ZIKV and Poly(I:C) as compared with other tissues or species. TGCs failed to up-regulate antiviral effectors and type I IFN upon ZIKV or Poly(I:C) stimulation, which might be due to a tight control of PRR signaling, as evidenced by the absence of activation of the downstream effector IRF3 and elevated expression of repressors. Importantly, exogenous IFNβ boosted the innate immunity of TGCs and inhibited ZIKV replication in the testis ex vivo, raising hopes for the prevention of ZIKV infection and persistence in this organ.
Usutu virus (USUV) and West Nile virus (WNV) are phylogenetically close emerging arboviruses and constitute a global public health threat. Since USUV and WNV are transmitted by mosquitoes, the first immune cells they encounter are skin-resident dendritic cells, the most peripheral outpost of immune defense. This unique network is composed of Langerhans cells (LCs) and dermal DCs, which reside in the epidermis and the dermis, respectively. Using human skin explants, we show that while both viruses can replicate in keratinocytes, they can also infect resident DCs with distinct tropism: WNV preferentially infects DCs in the dermis, whereas USUV has a greater propensity to infect LCs. Using both purified human epidermal LCs (eLCs) and monocyte derived LCs (MoLCs), we confirm that LCs sustain a faster and more efficient replication of USUV than WNV and that this correlates with a more intense innate immune response to USUV compared with WNV. Next, we show that ectopic expression of the LC-specific C-type lectin receptor (CLR), langerin, in HEK293T cells allows WNV and USUV to bind and enter, but supports the subsequent replication of USUV only. Conversely, blocking or silencing langerin in MoLCs or eLCs made them resistant to USUV infection, thus demonstrating that USUV uses langerin to enter and replicate in LCs. Altogether, our results demonstrate that LCs constitute privileged target cells for USUV in human skin, because langerin favours its entry and replication. Intriguingly, this suggests that USUV efficiently escapes the antiviral functions of langerin, which normally safeguards LCs from most viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.