Non-contact trapping using acoustic standing waves has shown promising results in cell-based research lately. However, the devices demonstrated are normally fabricated using microfabrication or precision machining methods leading to a high unit cost. In e.g. clinical or forensic applications avoiding cross-contamination, carryover or infection is of outmost importance. In these applications disposable devices are key elements, thus making the cost per unit a critical factor. A solution is presented here where low-cost off-the-shelf glass capillaries are used as resonators for standing wave trapping. Single-mode as well as multi-node trapping is demonstrated with an excellent agreement between simulated and experimentally found operation frequencies. Single particle trapping is verified at 7.53 MHz with a trapping force on a 10 microm particle of up to 1.27 nN. The non-contact trapping is proved using confocal microscopy. Finally, an application is presented where the capillary is used as a pipette for aspirating, trapping and dispensing red blood cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.