Hepatic steatosis is present in insulin-resistant obese rodents and is concomitant with active lipogenesis. Hepatic lipogenesis depends on the insulin-induced activation of the transcription factor SREBP-1c. Despite prevailing insulin resistance, SREBP-1c is activated in the livers of genetically and diet-induced obese rodents. Recent studies have reported the presence of an ER stress response in the livers of obese ob/ob mice. To assess whether ER stress promotes SREBP-1c activation and thus contributes to lipogenesis, we overexpressed the chaperone glucose-regulated protein 78 (GRP78) in the livers of ob/ob mice using an adenoviral vector. GRP78 overexpression reduced ER stress markers and inhibited SREBP-1c cleavage and the expression of SREBP-1c and SREBP-2 target genes. Furthermore, hepatic triglyceride and cholesterol contents were reduced, and insulin sensitivity improved, in GRP78-injected mice. These metabolic improvements were likely mediated by restoration of IRS-2 expression and tyrosine phosphorylation. Interestingly, GRP78 overexpression also inhibited insulin-induced SREBP-1c cleavage in cultured primary hepatocytes. These findings demonstrate that GRP78 inhibits both insulin-dependent and ER stress-dependent SREBP-1c proteolytic cleavage and explain the role of ER stress in hepatic steatosis in obese rodents.
Localization of mRNAs provides a novel mechanism for synthesis of proteins close to their site of function. MT1 (metallothionein-1) is a small, metal-binding protein that is largely cytoplasmic but which can be found in the nucleus. The localization of rat MT1 requires the perinuclear localization of its mRNA by a mechanism dependent on the 3'-UTR (3'-untranslated region). The present study investigates the nature of this mRNA localization signal using Chinese-hamster ovary cells transfected with gene constructs in which either MT1 or the globin coding region is linked to different sequences from the MT1 3'-UTR. Deletion, mutagenesis and antisense oligonucleotide approaches indicate that nt 45-76 of the 3'-UTR, in particular nt 66-76, are required for the localization of either MT1 mRNA or chimaeric transcripts in which a beta-globin coding region is linked to sequences from the MT1 3'-UTR. This section of the 3'-UTR contains a CACC repeat. Two mutations that are predicted to alter the secondary structure of this region also impair localization. Our hypothesis is that the perinuclear localization signal in MT1 mRNA is formed by a combination of the CACC repeat and its structural context.
In eukaryotic cells, several mRNAs including those of c-myc and c-fos are localized to the perinuclear cytoplasm and associated with the cytoskeleton. The localization element of c-myc mRNA is present within its 3'UTR (3'-untranslated region) but the precise nature of this signal has remained unidentified. Chemical/enzymatic cleavage with RNases (ribonucleases) and lead have identified single-stranded and double-stranded regions in RNA transcripts of nucleotides 194-280 of the c-myc 3'UTR. Combined with computer predicted structure these results indicate that this region folds so that part of it forms a stem-loop structure. A mutation, that has been previously shown to prevent localization, leads to a different secondary RNA structure in this region as indicated by altered cleavage patterns. Competitive gel-retardation assays, using labelled transcripts corresponding to nucleotides 205-280 of c-myc 3'UTR, and fibroblast extracts revealed that the stem-loop region was sufficient for RNA-protein complex formation. In situ hybridization studies in cells transfected with reporter constructs, in which all or parts of the region corresponding to this stem-loop were linked to beta-globin, indicated that this region was sufficient for localization and that deletion of the nucleotides corresponding to the proposed upper-stem or terminal loop prevented localization. Our hypothesis is that an AU-rich stem-loop structure within nt 222-267 in the c-myc 3'UTR forms the perinuclear localization signal. Bioinformatic analysis suggests that this signal shares features with 3'UTRs of other localized mRNAs and that these features may represent a conserved form of signal in mRNA localization mechanisms.
Messenger RNA (mRNA) localisation is a widespread mechanism within eukaryotic cells that provides local synthesis of proteins close to where they function. In general, this mRNA targeting involves the cytoskeleton and signals within the 3' untranslated region (3'UTR) of the transcript. In this paper, the authors review what is known of the nature of the localisation signals and the proteins that interact with them in animal cells. Specific examples are selected to illustrate the emerging pattern of how these signals are formed by the mRNA and the key RNA-binding proteins. The signals are usually restricted to relatively short regions of the 3'UTR, but their precise nature varies, with both sequence and structure playing key roles. Repeat motifs and functional redundancy also appear as common features of these signals. The trans-acting factors involved in localisation include proteins having other roles in nuclear events, proteins that shuttle between the nucleus and the cytoplasm and translational factors. In addition, there is evidence of homology among these proteins and the mechanisms of localisation across eukaryotic species.
In eukaryotic cells, mRNA localization can provide local protein synthesis. Metallothionein-1 (MT-1) mRNA is associated with the perinuclear cytoskeleton, and this is essential for subsequent nuclear import of the protein. The present study defines the cisacting localization signal and a trans-acting binding protein. Gel retardation and UV cross-linking assays using MT-1 39UTR transcripts and CHO cell extracts revealed formation of a complex containing a ;50-kDa protein. Only localization-positive mutant transcripts competed for binding of this protein. Using an RNA affinity technique, Western blotting, mass spectrometry, and a supershift assay, the protein was identified as Elongation factor 1a (eEF1a). Mutation and deletion analysis showed that two regions, nucleotides 21-36 and 66-76, were required for both binding and localization. RNA-folding prediction combined with chemical and enzymatic probing experiments suggest that these regions are in juxtaposition within a stem/internal loop structure. Mutations that are predicted to alter this structure abrogate protein binding. Our hypothesis is that the cis-acting signal in MT-1 39UTR is formed by this stem/internal loop, that it binds eEF1a, and that eEF1a-cytoskeleton interactions play a role in perinuclear mRNA localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.