Programs that monitor local, national, and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programs. To accurately compare transmitted drug resistance rates across geographic regions and times, the World Health Organization has recommended the adoption of a consensus genotypic definition of transmitted HIV-1 drug resistance. In January 2007, we outlined criteria for developing a list of mutations for drug-resistance surveillance and compiled a list of 80 RT and protease mutations meeting these criteria (surveillance drug resistance mutations; SDRMs). Since January 2007, several new drugs have been approved and several new drug-resistance mutations have been identified. In this paper, we follow the same procedures described previously to develop an updated list of SDRMs that are likely to be useful for ongoing and future studies of transmitted drug resistance. The updated SDRM list has 93 mutations including 34 NRTI-resistance mutations at 15 RT positions, 19 NNRTI-resistance mutations at 10 RT positions, and 40 PI-resistance mutations at 18 protease positions.
BackgroundHerpes Simplex Virus (HSV) infection has been proposed as a possible risk factor of Alzheimer's Disease (AD) notably because it is neurotropic, ubiquitous in the general population and able to establish lifelong latency in the host. The fact that HSV was present in elderly subjects with AD suggests that the virus could be a co-factor of the disease. We investigated the risk of developing AD in anti-HSV immunoglobulin G (IgG) positive subjects (indicator of a lifelong infection to HSV) and IgM-positive subjects (indicator of primary infection or reactivation of the virus) in a longitudinal population-based cohort of elderly subjects living in the community.MethodsCox proportional hazard models were used to study the risk of developing AD according to the presence or not of anti-HSV IgG and IgM antibodies, assessed in the sera of 512 elderly initially free of dementia followed for 14 years.ResultsDuring the follow-up, 77 incident AD cases were diagnosed. Controlled for age, gender, educational level and Apolipoprotein E4 (APOE4) status, IgM-positive subjects showed a significant higher risk of developing AD (HR = 2.55; 95% CI [1.38–4.72]), although no significant increased risk was observed in IgG-positive subjects (HR = 1.67; 95%CI [0.75–3.73]). No modification effect with APOE4 status was found.ConclusionReactivation of HSV seropositivity is highly correlated with incident AD. HSV chronic infection may therefore be contributive to the progressive brain damage characteristic of AD.
BackgroundRegional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.Methods and FindingsWe reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05–1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06–1.25), North America (OR = 1.19; 95% CI: 1.12–1.26), Europe (OR = 1.07; 95% CI: 1.01–1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12–1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92–1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions—a proxy for recent infection—yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs—K101E, K103N, Y181C, and G190A—accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling.ConclusionsMost TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.