The first processing step of precursor ribosomal RNA (pre-rRNA) involves a cleavage within the 5Ј external transcribed spacer. This processing requires sequences downstream of the cleavage site which are perfectly conserved among human, mouse and Xenopus and also several small nucleolar RNAs (snoRNAs): U3, U14, U17 and E3. In this study, we show that nucleolin, one of the major RNA-binding proteins of the nucleolus, is involved in the early cleavage of pre-rRNA. Nucleolin interacts with the pre-rRNA substrate, and we demonstrate that this interaction is required for the processing reaction in vitro. Furthermore, we show that nucleolin interacts with the U3 snoRNP. Increased levels of nucleolin, in the presence of the U3 snoRNA, activate the processing activity of a S100 cell extract. Our results suggest that the interaction of nucleolin with the pre-rRNA substrate might be a limiting step in the primary processing reaction. Nucleolin is the first identified metazoan proteinaceous factor that interacts directly with the rRNA substrate and that is required for the processing reaction. Potential roles for nucleolin in the primary processing reaction and in ribosome biogenesis are discussed.
The aim of this study is to quantify D. folliculorum colonisation in rosacea subtypes and age-matched controls and to determine the relationship between D. folliculorum load, rosacea subtype and skin innate immune system activation markers. We set up a multicentre, cross-sectional, prospective study in which 98 adults were included: 50 with facial rosacea, including 18 with erythematotelangiectatic rosacea (ETR), and 32 with papulopustular rosacea (PPR) and 48 age- and sex-matched healthy volunteers. Non-invasive facial samples were taken to quantify D. folliculorum infestation by quantitative PCR and evaluate inflammatory and immune markers. Analysis of the skin samples show that D. folliculorum was detected more frequently in rosacea patients than age-matched controls (96% vs 74%, P < 0.01). D. folliculorum density was 5.7 times higher in rosacea patients than in healthy volunteers. Skin sample analysis showed a higher expression of genes encoding pro-inflammatory cytokines (Il-8, Il-1b, TNF-a) and inflammasome-related genes (NALP-3 and CASP-1) in rosacea, especially PPR. Overexpression of LL-37 and VEGF, as well as CD45RO, MPO and CD163, was observed, indicating broad immune system activation in patients with rosacea. In conclusion, D. folliculorum density is highly increased in patients with rosacea, irrespective of rosacea subtype. There appears to be an inverse relationship between D. folliculorum density and inflammation markers in the skin of rosacea patients, with clear differences between rosacea subtypes.
Nucleolin is an abundant protein of the nucleolus. Nucleolar proteins structurally related to nucleolin are found in organisms ranging from yeast to plants and mammals. The association of several structural domains in nucleolin allows the interaction of nucleolin with different proteins and RNA sequences. Nucleolin has been implicated in chromatin structure, rDNA transcription, rRNA maturation, ribosome assembly and nucleo-cytoplasmic transport. Studies of nucleolin over the last 25 years have revealed a fascinating role for nucleolin in ribosome biogenesis. The involvement of nucleolin at multiple steps of this biosynthetic pathway suggests that it could play a key role in this highly integrated process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.