The need to understand differences among general circulation model projections of CO2-induced climatic change has motivated the present study, which provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphasized that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback. INTRODUCTIONProjected increases in the concentration of atmospheric carbon dioxide and other greenhouse gases are expected to have an important impact on climate. The most comprehensive way to infer future climatic change associated with this perturbation of atmospheric composition is by means of three-dimensional general circulation models (GCMs). Schlesinger and Mitchell [1987] have, however, demonstrated that several existing GCMs simulate climate responses to increasing CO2 that differ considerably. Cess and Potter [1988], following a suggestion by Speltnan and Manabe [1984], indicate that differences in global-mean warming, The global-mean direct radiative forcing G of the surfaceatmosphere system is evaluated by holding all other climate parameters fixed. It is this quantity that induces the ensuing climate change, and physically, it represents a change in the net (solar plus infrared) radiative flux at the top of the atmosphere (TOA). For an increase in the CO2 concentration of the atmosphere, to cite one example, G is the reduction in the emitted TOA infrared flux resulting solely from the CO2 increase, and this reduction results in a heating of the surface-atmosphere system. The response process is the change in climate that is then necessary to restore the TOA radiation balance, such that that is either too warm or too cold, then it will respectively produce a climate sensitivity parameter that is too small or too large, and clearly, the intercomparison simulation had to be designed to eliminate this effect. There was also a practical constraint: the CO2 simulations require large amounts of computer time for equilibration of the rather primitive ocean models that have been used in these numerical experiments.An attractive alternative that eliminated both of the above mentioned difficulties was to adopt +_2øK sea surface temperature ( The perpetual July simulation e...
Abstract. Future climate change will affect marine productivity, as well as other many components of Earth system. We have investigated the response of marine productivity to global warming with two different ocean biogeochemical schemes and two different atmosphere-ocean coupled general circulation models (GCM). Both coupled GCMs were used without flux correction to simulate climate response to increased greenhouse gases (+1% CO2/yr for 80 years). At 2xCO2, increased stratification leads to both reduced nutrient supply and increased light efficiency. Both effects drive a reduction in marine export production (-6%), although regionally changes can be both negative and positive (from-15% zonal average in the tropics to +10% in the Southern Ocean). Both coupled models and both biogeochemical schemes simulate a poleward shift of marine production due mainly to a longer growing season at high latitudes. At low latitudes, the effect of reduced upwelling prevails. The resulting reduction in marine productivity, and other marine resources, could become detectable in the near future, if appropriate long-term observing systems are implemented.
We would like to acknowledge the support and successful cooperation of NASA and CNES in the development and operation of CALIPSO and the advocacy of Gérard Mégie for the mission. We thank Bill Hunt and the team at Ball Aerospace for CALIOP and payload integration; the teams at SODERN and Thales Alenia Space for the IIR and platform integration, respectively; the operations teams at NASA and CNES; and the support of the ASDC and ICARE data centers, who all made essential contributions to the success of the CALIPSO mission. The work described in "The occurrence of marine stratus and stratocumulus" was carried out by T. Kubar in collaboration with D. E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.