A novel free-flow protein purification technique based on isoelectric electrophoresis is presented, where the proteins are purified in solution without the need of carrier ampholytes. The gist of the method is to flow protein solutions under an immobilised pH gradient gel (IPG) through which an electric field is applied perpendicular to the direction of the flow. Due to the buffering capacity of the IPG gel, proteins with an isoelectric point (pI) close to pH of the gel in contact with the flow chamber stay in solution because they are neutral and therefore not extracted by the electric field. Other proteins will be charged when approaching the IPG gel and are extracted into the gel by the electric field. Both a demonstration experiment with pI markers and a simulation of the electric field distribution are presented to highlight the principle of the system. In addition, an isoelectric fractionation of an Escherichia coli extract is shown to illustrate the possible applications.
The impact of storage conditions on compound stability and compound solubility has been debated intensely over the past 5 years. At Novartis, the authors decided to opt for a storage concept that can be considered controversial because they are using a DMSO/water (90/10) mixture as standard solvent. To assess the effect of water in DMSO stocks on compound stability, the authors monitored the purity of a subset of 1404 compounds from ongoing medicinal chemistry projects over several months. The study demonstrated that 85% of the compounds were stable in wet DMSO over a 2-year period at 4 °C. This result validates the storage concept developed at Novartis as a pragmatic approach that takes advantage of the benefits of DMSO/water mixtures while mediating the disadvantages. In addition, the authors describe how purity data collected over the course of the chemical validation of high-throughput screening actives are used to improve the analytical quality of the Novartis screening deck. (Journal of Biomolecular Screening 2008:999-1006
Phenotypic chemogenomics studies require screening strategies that account for the complex nature of the experimental system. Unknown mechanism of action and high frequency of false positives and false negatives necessitate iterative experiments based on hypotheses formed on the basis of results from the previous step. Process-driven High Throughput Screening (HTS), aiming to "industrialize" lead finding and developed to maximize throughput, is rarely affording sufficient flexibility to design hypothesis-based experiments.In this contribution, we describe a High Throughput Cherry Picking (HTCP) system based on acoustic dispensing technology that was developed to support a new screening paradigm. We demonstrate the power of hypothesis-based screening in three chemogenomics studies that were recently conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.