Alkylidene oxindoles are important functional moieties and building blocks in pharmaceutical and synthetic chemistry. Our interest in biologically active compounds focused our studies on the synthesis of novel oxindoles, bearing on the exocyclic double bond at the C8, CN, and S groups. Extending the potential applications of Appel’s salt, we developed a new synthetic approach by investigating the reactions of C5-substituted 2-oxindoles with 4,5-dichloro-1,2,3-dithiazolium chloride (Appel’s salt) to give original (Z)-3-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)indolin-2-one derivatives, and new 2-mercapto-(2-oxoindolin-3-ylidene)acetonitriles via a dithiazole ring-opening reaction. The work described in this article represents further applications of Appel’s salt in the conception of novel heterocyclic rings, in an effort to access original bioactive compounds. Fifteen new compounds were prepared and fully characterized.
Lipases are important catalysts in chiral synthesis due to their wide substrate recognition combined with a high stereoselectivity. We demonstrate here that the state, free or immobilized, of Candida antarctica lipase B (CaLB) affects enantioselectivity and also alters the temperature dependancy of the enzyme. This indicates that CaLB undergoes various conformations induced by its interaction with the different immobilization supports studied. Molecular imprinting experiments, using immobilized enzyme co-dried with mimic substrate molecules, enhanced the enantiomeric ratio two-fold or three-fold, depending on the immobilization support. The structure of the acyl donor has a pronounced effect on CaLB catalyzed resolution, due to the proximity of the acyl and alcohol moieties during catalysis. When the acylation of pentan-2-ol was examined, we found that the 3C methyl propanoate donor afforded the highest resolution. Trans-(Z)-cyclooct-5-en-1,2-diol was used as a model racemic substrate to study the ability of lipase to catalyze the resolution of difunctionalized compounds. There was a clear enhancement in the enantiomer selectivity of the biotransformation of the diol when vinyl butanoate is used as the acyl donor. The conversion and enantiomeric excess of (1R,2R)-monoacetates were enhanced, using immobilized CaLB, when the chain length of the donors increased from C2 to C4.
Over the last decade, the use of biocatalysts has become an attractive alternative to conventional chemical methods, especially for organic synthesis, due to their unusual properties. Among these enzymes, lipases are the most widely used, because they are cheap, easily available, cofactor-free, and have broad substrate specificity. Combined to microwave heating in non-aqueous medium, recent results suggest that irradiation may influence the enzyme activity. This Communication reports the benefits of lipases and the microwave irradiation on the kinetic resolution of racemic homochiral (Z)-cyclooct-5-ene-1,2-diol and (Z)-2-acetoxycyclooct-4-enyl acetate. In order to best achieve the kinetic resolution, different parameters were studied including the type of lipase, the temperature, the impact of microwave power compared to conventional heating. Optimization of the reaction parameters lead to the obtainment of highly enriched or enantiopure diols and diesters in a clean, efficient and safe way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.