The most common injuries in healthcare are related to transfers. The Strong Arm system assists caregivers in providing fully dependent transfers from an electric power wheelchair to a bed, shower bench, toilet or other surface. However, this system currently controlled by buttons could be more successful with a more intuitive method during use. This paper presents the initial development of direct interaction for a robotic transfer system called Strong Arm. Direct interaction was used to make a transfer system more intuitive to operate using a three-axis load cell. To move Strong Arm, the user must apply intentional force on any of the given axes by surpassing the axis threshold. Unintentional movement could lead to injury. The results indicate that the thresholds for each axis were at least 3.5 N in X, 16.9 N in Y and 5.3N in Z in order to prevent unintentional forces from a human hand that would cause the robot to move.
Purpose. The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. Method. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Results. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Conclusions. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology.
Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.