Occupationally used high-frequency vibration is supposed to have negative effects on blood flow and muscle strength. Conversely, low-frequency vibration used as a training tool appears to increase muscle strength, but nothing is known about its effects on peripheral circulation. The aim of this investigation was to quantify alterations in muscle blood volume after whole muscle vibration--after exercising on the training device Galileo 2000 (Novotec GmbH, Pforzheim, Germany). Twenty healthy adults performed a 9-min standing test. They stood with both feet on a platform, producing oscillating mechanical vibrations of 26 Hz. Alterations in muscle blood volume of the quadriceps and gastrocnemius muscles were assessed with power Doppler sonography and arterial blood flow of the popliteal artery with a Doppler ultrasound machine. Measurements were performed before and immediately after exercising. Power Doppler indices indicative of muscular blood circulation in the calf and thigh significantly increased after exercise. The mean blood flow velocity in the popliteal artery increased from 6.5 to 13.0 cm x s(-1) and its resistive index was significantly reduced. The results indicate that low-frequency vibration does not have the negative effects on peripheral circulation known from occupational high-frequency vibration.
The role of subchondral bone in the pathogenesis of cartilage damage has likely been underestimated. Subchondral bone is not only an important shock absorber, but it may also be important for cartilage metabolism. Contrary to many drawings and published reports, the subchondral region is highly vascularized and vulnerable. Its terminal vessels have, in part, direct contact with the deepest hyaline cartilage layer. The perfusion of these vessels accounts for more than 50% of the glucose, oxygen, and water requirements of cartilage. Bony structure, local metabolism, hemodynamics, and vascularization of the subchondral region differ within a single joint and from one joint to another. Owing to these differences, repetitive, chronic overloading or perfusion abnormalities may result in no pathological reaction at all in one joint, while in another joint, these same conditions may lead to osteonecrosis, osteochondritis dissecans, or degenerative changes. According to this common etiological root, similar pathological reactions beginning with marrow edema and necrosis and followed by bone and cartilage fractures, joint deformity, and insufficient healing processes are found in osteonecrosis, osteochondritis dissecans, and degenerative disease as well.
In previous papers relative signal intensity increase was used as a quantitative assessment parameter for contrast uptake in contrast-enhanced MRI. However, relative signal intensity increase does not only reflect contrast uptake but depends also on tissue parameters (native T1 relaxation time) and sequence parameters (repetition time and flip angle); thus, the contrast uptake cannot be assessed accurately using relative signal intensity increase. Based on an analysis of the contrast behavior of spoiled gradient echo sequences, a method is described in this paper that overcomes the limitations of relative signal intensity increase measurement. A parameter, called "enhancement factor" (EF) is introduced that approximates differential T1 relaxation rate. The enhancement factor scales linearly with contrast uptake and is independent of tissue and sequence parameters. The additional measurement time involved in determining the enhancement factor is less than 1 min and computation is straightforward. The practicality of the new method was confirmed by phantom measurements using T1-weighted and proton density-weighted spoiled gradient echo sequences (FLASH-2D). Enhancing tissues were simulated by water phantoms doped with increasing concentrations of Gd-DTPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.