Purpose In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect of changes in geometric parameters, including internal and external dimensions on the behavior of heat transfer and fluid flow. For each parameter, an optimum ratio will be presented. Design/methodology/approach The results showed that in a channel cell, changing any geometric parameter may affect the temperature and flow field, even though the volume of the channel is kept constant. For a relatively small hydraulic diameter, microchannels with different angles have a similar dimensionless heat flux, while channels with bigger dimensions show various values of dimensionless heat flux. By increasing the angles of trapezoidal microchannels, dimensionless heat flux per unit of volume increases. As a result, the maximum and minimum heat transfer rate occurs in a trapezoidal microchannel with 75° and 30 internal’s, respectively. In the study of dimensionless heat flux rate with hydraulic diameter variations, an optimum hydraulic diameter (Dh) was observed in which the heat transfer rate per unit volume attains maximum value. Findings This optimum state is predicted to happen at a side angle of 75° and hydraulic diameter of 290 µm. In addition, in trapezoidal microchannel with higher aspect ratio, dimensionless heat flux rate is lower. Changing side angles of the channels and pressure drop have the same effect on pressure drop. For a constant pressure drop, if changing the side angles causes an increase in the rectangular area of the channel cross-section and the effect of the sides are not felt by the fluid, then the dimensionless heat flux will increase. By increasing the internal aspect ratio (t_2/t_3), the amount of t_3 decreases, and consequently, the conduction resistance of the hot surface decreases. Originality/value The effects of geometry of the microchannel, including internal and external dimensions on the behavior of heat transfer and fluid flow for pressure ranges between 2 and 8 kPa.
Purpose The study aims to study the nanofluid flow and heat transfer in a T-shaped heat exchanger. For the numerical simulations, the lattice Boltzmann method is used. Design/methodology/approach The end of each branch of the heat exchanger is considered a curve wall that requires special thermal and physical boundary conditions. To improve the thermal performance of the heat exchanger, the CuO–water nanofluid, which has better heat transfer performance with respect to pure water, is used. The dynamic viscosity of nanofluid is estimated by means of KKL model. Several active fins and solid bodies are implanted within the heat exchanger with different thermal arrangements. Findings In the present work, different approaches such as heatline visualization, local and total entropy generation analysis, local and total Nusselt variation are used to detect the impact of different considered parameters such as Rayleigh number (103 < Ra < 106), solid volume fraction of nanofluid (φ = 0,0.01,0.02,0.03 and 0.04 vol. per cent) and thermal arrangements of internal bodies (Case A, Case B, Case C and Case D) on the fluid flow and heat transfer performance. Originality/value The originality of this work is to analyze the two-dimensional natural convection and entropy generation using lattice Boltzmann method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.