Actinomycetes inhabiting granitic rocks at St. Katherine, Egypt were investigated for their bioweathering potential. Actinomycete counts ranged between 174 and 360 colony forming units per gram. Counts were positively correlated to rock porosity (r = 0.65) and negatively correlated to rock salinity (r = -0.56). Sixty-six actinomycete isolates originating from rocks could be assigned into eight genera, with a high frequency of Nocardioides and Streptomyces. Organic acids were produced by 97% of the isolates. Strains belonging to Actinopolyspora, Actinomadura, Kitasatospora, Nocardioides, and Kibdelosporangium showed the highest acid production indices. Representatives from all eight genera could precipitate metals Cu, Fe, Zn, Cd, and Ag up to concentrations of 2.5 mM each. An actinomycete consortium of two Nocardioides strains and one Kibdelosporangium strain was studied for its potential to cause rock weathering in batch experiments. Results indicated a high ability of the consortium to leach the metals Cu, Zn, and Fe up to 2.6-, 2.1-, and 1.3-fold, respectively, compared to the control after 4 weeks. The pH significantly decreased after 1 week, which was parallel to an increased release of phosphate and sulfate reaching a 2.2- and 2.5-fold increase, respectively, compared to control. Highly significant weight loss (p = 0.005) was achieved by the consortium, indicating a potential multiple role of actinomycetes in weathering by acid production, metal leaching, and solubilization of phosphate and sulfate. This study emphasizes the diverse and unique abilities of actinomycetes inhabiting rock surfaces which could be of potential biotechnological applications, such as in the bioremediation of metal-contaminated environments and metal biorecovery.
Background
Cancer is associated with excess morbidity and mortality from coronavirus disease 2019 (COVID-19) following infection by the novel pandemic coronavirus SARS-CoV-2. Vaccinations against SARS-CoV-2 have been rapidly developed and proved highly effective in reducing the incidence of severe COVID-19 in clinical trials of healthy populations. However, patients with cancer were excluded from pivotal clinical trials. Early data suggest that vaccine response is less robust in patients with immunosuppressive conditions or treatments, while toxicity and acceptability of COVID-19 vaccines in the cancer population is unknown. Unanswered questions remain about the impact of various cancer characteristics (such as treatment modality and degree of immunosuppression) on serological response to and safety of COVID-19 vaccinations. Furthermore, as the virus and disease manifestations evolve, ongoing data is required to address the impact of new variants.
Methods
SerOzNET is a prospective observational study of adults and children with cancer undergoing routine SARS-CoV-2 vaccination in Australia. Peripheral blood will be collected and processed at five timepoints (one pre-vaccination and four post-vaccination) for analysis of serologic responses to vaccine and exploration of T-cell immune correlates. Cohorts include: solid organ cancer (SOC) or haematological malignancy (HM) patients currently receiving (1) chemotherapy, (2) immune checkpoint inhibitors (3) hormonal or targeted therapy; (4) patients who completed chemotherapy within 6–12 months of vaccination; (5) HM patients with conditions associated with hypogammaglobulinaemia or immunocompromise; (6) SOC or HM patients with allergy to PEG or polysorbate 80. Data from healthy controls already enrolled on several parallel studies with comparable time points will be used for comparison. For children, patients with current or prior cancer who have not received recent systemic therapy will act as controls. Standardised scales for quality-of-life assessment, patient-reported toxicity and vaccine hesitancy will be obtained.
Discussion
The SerOzNET study was commenced in June 2021 to prospectively study immune correlates of vaccination in specific cancer cohorts. The high proportion of the Australian population naïve to COVID-19 infection and vaccination at study commencement has allowed a unique window of opportunity to study vaccine-related immunity. Quality of life and patient-reported adverse events have not yet been reported in detail post-vaccination for cancer patients.
Trial registration This trial is registered on the Australia New Zealand Clinical Trials Registry (ANZCTR) ACTRN12621001004853. Submitted for registration 25 June 2021. Registered 30 July 2021 (Retrospectively registered). https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382281&isReview=true
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.