Ovarian cancer is the fifth most common cancer affecting the female population and at present, stands as the most lethal gynecologic malignancy. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms and below par diagnostic criteria at early phases along with a lack of effective treatment at advanced stages. It is thus of utmost importance to understand ovarian carcinoma through several lenses including its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several important aspects of ovarian cancer pathobiology as a means to provide the necessary background to approach ovarian malignancies in the future.
Ovarian cancer is the fifth most common cancer affecting women and at present, stands as the most lethal gynecologic malignancy. The poor disease outcome is due to the nonspecific symptoms and the lack of effective treatment at advanced stages. Thus, it is of utmost importance to understand ovarian carcinoma through several lenses and to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several determinants of this unique tumor microenvironment, their influence on disease outcome and ongoing clinical trials targeting these determinants.
Over the past decades, researchers have reported several mechanisms for doxorubicin (DOX)-induced cardiomyopathy, including oxidative stress, inflammation, and apoptosis. Another mechanism that has been suggested is that DOX interferes with the cell cycle and induces oxidative stress in C-kit+ cells (commonly known as cardiac progenitor cells), reducing their regenerative capacity. Cardiac regeneration through enhancing the regenerative capacity of these cells or administration of other stem cells types has been the axis of several studies over the past 20 years. Several experiments revealed that local or systemic injections with mesenchymal stem cells (MSCs) were associated with significantly improved cardiac function, ameliorated inflammatory response, and reduced myocardial fibrosis. They also showed that several factors can affect the outcome of MSC treatment for DOX cardiomyopathy, including the MSC type, dose, route, and timing of administration. However, there is growing evidence that the C-kit+ cells do not have a cardiac regenerative potential in the adult mammalian heart. Similarly, the protective mechanisms of MSCs against DOX-induced cardiomyopathy are not likely to include direct differentiation into cardiomyocytes and probably occur through paracrine secretion, antioxidant and anti-inflammatory effects. Better understanding of the involved mechanisms and the factors governing the outcomes of MSCs therapy are essential before moving to clinical application in patients with DOX-induced cardiomyopathy.
The tropism of ovarian cancer (OvCa) to the peritoneal cavity is implicated in widespread dissemination, suboptimal surgery, and poor prognosis. This tropism is influenced by stromal factors that are not only critical for the oncogenic and metastatic cascades, but also in the modulation of cancer cell metabolic plasticity to fulfill their high energy demands. In this respect, we investigated the role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in metabolic plasticity of OvCa. We used a syngeneic model of OvCa in Sparc-deficient and proficient mice to gain comprehensive insight into the paracrine effect of stromal-SPARC in metabolic programming of OvCa in the peritoneal milieu. Metabolomic and transcriptomic profiling of micro-dissected syngeneic peritoneal tumors revealed that the absence of stromal-Sparc led to significant upregulation of the enzymes involved in glycolysis, TCA cycle, and mitochondrial electron transport chain (ETC), and their metabolic intermediates. Absence of stromal-Sparc increased reactive oxygen species and perturbed redox homeostasis. Recombinant SPARC exerted a dose-dependent inhibitory effect on glycolysis, mitochondrial respiration, ATP production and ROS generation. Comparative analysis with human tumors revealed that SPARC-regulated ETC-signature inversely correlated with SPARC transcripts. Targeting mitochondrial ETC by phenformin treatment of tumor-bearing Sparc-deficient and proficient mice mitigated the effect of SPARC-deficiency and significantly reduced tumor burden, ROS, and oxidative tissue damage in syngeneic tumors. In summary, our findings provide novel insights into the role of SPARC in regulating metabolic plasticity and bioenergetics in OvCa, and shines light on its potential therapeutic efficacy.
Background: Peguero electrocardiographic left ventricular hypertrophy (ECG-LVH) criteria are newly developed criteria that have shown better diagnostic performance than the traditional Cornell-voltage and Sokolow-Lyon criteria. However, prediction of poor outcomes rather than detection of increased left ventricular mass is becoming the primary use for ECG-LVH criteria which requires investigating any new ECG-LVH criteria in terms of prediction.Aims: To examine the prognostic significance of the newly developed Peguero ECG-LVH criteria.Methods: We compared the prognostic significance of Peguero ECG-LVH with Cornell-voltage and Sokolow-Lyon ECG-LVH criteria in 7,825 participants (age 59.8 ± 13.4 years; 52.7% women) from the third National Health and Nutrition Examination Survey who were free of major intraventricular conduction defects. ECG-LVH criteria were derived from digital ECG tracings processed at a central core laboratory.Results: At baseline, ECG-LVH was detected in 11.8% by Peguero; in 4.3% by Cornell voltage and in 6.4% by Sokolow-Lyon. During a median follow up of 13.8 years, 2,796 all-cause mortality events occurred. In multivariable models adjusted for demographics and cardiovascular risk factors, presence of Peguero ECG-LVH was associated with increased risk of all-cause mortality [HR (95% CI): 1.29 (1.16, 1.44)]. This association was not significantly different from the associations of Cornell voltage-LVH or Sokolow-Lyon LVH with all-cause mortality [HR (95%CI): 1.32 (1.12, 1.55) and 1.24 (1.07, 1.43), respectively; p-values for comparisons of these HRs with the HR of Peguero ECG-LVH 0.817 and 0.667, respectively]. Similar patterns of associations were observed with cardiovascular, ischemic heart disease and heart failure mortalities.Conclusion: Peguero ECG-LVH is predictive of increased risk of death similar to the traditional ECG-LVH criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.