Constructed wetlands are man-made complex of substrates, emergent/submergent vegetation, and water. Constructed wetlands have been known as an efficient and low-cost treatment process. Constructed wetland is a natural treatment system that physical, chemical, and biological processes occur when water, soil, plants, and microorganisms interact. They are considered as natural treatment ecosystems that are designed to take advantages of the natural processes to provide wastewater treatment. Constructed wetlands treat different types of wastewaters such as municipal, industrial, agricultural, and storm water. The removal of heavy metals within wetlands is performed generally by plant uptake and by adsorption onto sediments. Heavy metal treatment examples and some specifications and regulations are finally discussed.
The properties of lightweight concrete containing pumice treated with sodium hypochlorite (NaOCl), were experimentally investigated in this study. The study used treated pumice as 100 % replacement of fine and coarse aggregates in concrete mixtures. Untreated pumice aggregates were used to prepare reference mixtures. In addition, the study investigated the effect of sodium hypochlorite on pumice properties. The concrete compressive strength at ages of 7 and 28 days was tested. The results showed that the compressive strength of concrete that contained treated pumice increased by 200 % as compared to concrete containing untreated pumice. The pumice aggregate treated with NaOCl increased the pumice strength and improved its physical characteristics as the mean of specific gravity and abrasion resistance.
Upon the view of this work, industrial floor is a vital structure due to its relation to quality of production, labor comfort, and human health. Flooring costs may reach 20% of single-story building construction expenditure, and the consumption of concrete for floors may come to 40%-50% of the total size of concrete. Thereby, the efficient design of floor will reduce materials consumption and labor, and will increase the endurance of the floor. Fiber reinforcement reduces the thickness of the subfloor about 20%-30%, hence enabling to reduce the consumption of cement and fillers. The use of fiber meshes will enable to save 30%-40% of steel. Despite the flexible use of fiber in concrete reinforcement saves effort and money, still fiber reinforced concrete is lacking additional regulations in Jordan.
Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned with investigation of fresh and hardened properties of self-compacting concrete (SCC) produced from local available materials in JORDAN. The produced SCC contains the local stone cut waste powder which is called Al-KHAMKHA in JORDAN with different replacement of (0%, 10%, and 25%) of fine silica aggregate; the study also investigates the effects of SP33 super plasticizer which is used by different doses (1%, 1.5% and 2%) for cement. The slump flow and the compressive strength of SCC were studied and the experimental results indicate the possibility of using Al-KHAMKHA in the production of SCC as the results showed that the compressive strength of the SCC with 10 % replacement by al-khamkha together with 1% SP33 super plasticizer was higher compared to pure SCC without al-khamkha; the results also showed that as al-khamkha content increased the slump flow decreased.
It is known that the dumping of Phosphate wastes from Phosphate factories and mines has a negative effect on the environment. In an effort to reduce dumping, this study examines the possible reuse of this waste as a replacement for the fine sand of silica in mortar and concrete. Phosphate waste replaces silica with the following by-weight percentages: 0%, 10%, 25%, 50% and 100%. To check the feasibility of such reuse, 30 mortar cubes, 30 concrete cubes, and 20 concrete cylinders were prepared for testing to achieve a compressive strength of 25 MPa according to ASTM (211.1-81). The tests performed in this paper are conducted to the following samples: (50 * 50 * 50 mm) mortar samples, (150 * 150 * 150 mm) concrete cubes, and (150 * 300 mm) concrete cylinders. The samples were left in curing for a period of 7 days for some samples, and others for 28 days. The results show that the use of Phosphate wastes increased the compressive strength of mortar by 29%. In concrete cubes, the use of Phosphate wastes increased compressive strength by 26%. In concrete cylinders, the use of Phosphate wastes increased the compressive strength by 34%. Subsequently, it is proposed that the stone squanders of Phosphate be utilized as an alternative to fine silica, and they demonstrated their quality through the basic tests of aggregate. The increase in stone strength is attributed to Phosphate waste as it has less absorption. The increase in the strength of Phosphate sand is due to the presence of chemical substances that increase the strength of its cohesion, such as TCP (Tricalcium Phosphate) (40.72%), P2O5 (Phosphate pentoxide) (18.64%), CaO (Calcium oxide) (28.22%) and SiO2 (Silicon dioxide) (44.45%). The percentage of CL (Chlorine) is minimal (0.01%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.