Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra zona compacta, and in other sub-cortical nuclei associated with a widespread occurrence of Lewy bodies. The cause of cell death in Parkinson's disease is still poorly understood, but a defect in mitochondrial oxidative phosphorylation and enhanced oxidative and nitrative stresses have been proposed. We have studied control(wt) (C57B1/6), metallothionein transgenic (MTtrans), metallothionein double gene knock (MTdko), alpha-synuclein knock out (alpha-syn(ko)), alpha-synuclein-metallothionein triple knock out (alpha-syn-MTtko), weaver mutant (wv/wv) mice, and Ames dwarf mice to examine the role of peroxynitrite in the etiopathogenesis of Parkinson's disease and aging. Although MTdko mice were genetically susceptible to 1, methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism, they did not exhibit any overt clinical symptoms of neurodegeneration and gross neuropathological changes as observed in wv/wv mice. Progressive neurodegenerative changes were associated with typical Parkinsonism in wv/wv mice. Neurodegenerative changes in wv/wv mice were observed primarily in the striatum, hippocampus and cerebellum. Various hallmarks of apoptosis including caspase-3, TNFalpha, NFkappaB, metallothioneins (MT-1, 2) and complex-1 nitration were increased; whereas glutathione, complex-1, ATP, and Ser(40)-phosphorylation of tyrosine hydroxylase, and striatal 18F-DOPA uptake were reduced in wv/wv mice as compared to other experimental genotypes. Striatal neurons of wv/wv mice exhibited age-dependent increase in dense cored intra-neuronal inclusions, cellular aggregation, proto-oncogenes (c-fos, c-jun, caspase-3, and GAPDH) induction, inter-nucleosomal DNA fragmentation, and neuro-apoptosis. MTtrans and alpha-Syn(ko) mice were genetically resistant to MPTP-Parkinsonism and Ames dwarf mice possessed significantly higher concentrations of striatal coenzyme Q10 and metallothioneins (MT 1, 2) and lived almost 2.5 times longer as compared to control(wt) mice. A potent peroxynitrite ion generator, 3-morpholinosydnonimine (SIN-1)-induced apoptosis was significantly attenuated in MTtrans fetal stem cells. These data are interpreted to suggest that peroxynitrite ions are involved in the etiopathogenesis of Parkinson's disease, and metallothionein-mediated coenzyme Q10 synthesis may provide neuroprotection.
Selegiline, a selective inhibitor of monoamine oxidase-B (MAO-B), was one of the first adjunct therapies in clinical neurology. A retrospective analysis of data from patients with Parkinson's disease found a significant increase in survival in those treated with selegiline plus L-dopa compared with L-dopa alone. The mechanism of action of selegiline is complex and cannot be explained solely by its MAO-B inhibitory action. Pretreatment with selegiline can protect neurons against a variety of neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), 6-hydroxydopamine, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), methyl--acetoxyethyl-2-chloroethylamine (AF64A), and 5,6-dihydroxyserotonin, which damage dopaminergic, adrenergic, cholinergic, and sertoninergic neurons, respectively. Selegiline produces an amphetamine-like effect, enhances the release of dopamine, and blocks the reuptake of dopamine. It stimulates gene expression of L-aromatic amino acid decarboxylase, increases striatal phenylethylamine levels, and activates dopamine receptors. Selegiline reduces the production of oxidative radicals, up-regulates superoxide dismutase and catalase, and suppresses nonenzymatic and iron-catalyzed autooxidation of dopamine. Selegiline compensates for loss of target-derived trophic support, delays apoptosis in serum-deprived cells, and blocks apoptosis-related fall in the mitochondrial membrane potential. Most of the aforementioned properties occur independently of selegiline's efficacy to inhibit MAO-B. © 2002 Wiley-Liss, Inc.Selegiline (deprenyl; Jumex), a noncompetitive monoamine oxidase-B (MAO-B) inhibitor, has continued to hold a fascination for clinicians and researchers since it was first synthesized as a "psychic energizer." The "neuroprotective effects" of selegiline became evident when it was found that it blocked the parkinsonism-inducing effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; see Langston and Tanner, 2000).MPTP as a neurotoxin has attracted the attention of many investigators owing to its capacity in humans and nonhuman primates to induce neuropathologic abnormalities (rigidity, resting tremor, akinesia, etc.) similar to those observed in patients with idiopathic Parkinson's disease (PD). As in PD also after administration of MPTP, the observed symptoms are caused by depletion of dopamine in the neostriatum following selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta (SNpc).MPTP's capacity to induce PD was discovered accidentally when several drug addicts in California developed numerous symptoms of PD after self-administration of a "synthetic heroin" containing MPTP as a contaminant byproduct. Numerous investigations have since been carried out in which MPTP was administered in vivo to primates and rodents as well as in vitro using cell cultures. Today, MPTP-induced toxicity represents one of the most interesting models for investigating the pathogenesis of the parkinsonian syndrome. However, its mechanism of action is stil...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.