Gas Chromatography-Mass Spectrometry (GC-MS) the best technique to identified the compounds of essential oils by comparison of mass spectra data obtained from the sample with that taken from pure commercially available standards injected under the same conditions. To characterize the chemical constituents of Hibiscus Flower using GC-MS, the shade dried flower powder was extracted with methanol by using Microwave-assisted Hydrodistillation (MAHD). The GC-MS analysis provided different peaks determining the presence of ten compounds. These compounds havebiological activity namely 2-Phenylthiolane (57.31%), Cyclohexene, 3-ethenyl- (25.91%), Acetaldehyde (12.70%), N-Methylallylamine (9.99%), ropanamide (6.79%) and Phthalic acid, bis (7-methyloctyl) ester (5.21%). From the results, it can be concluded that Jasmine flower extract shows the presence of 10 phytocompounds. The presence of various bioactive compounds justifies the use of the jasmine flower for various ailments by traditional practitioners.
Key indicators: single-crystal X-ray study; T = 100 K; mean (C-C) = 0.002 Å; R factor = 0.044; wR factor = 0.114; data-to-parameter ratio = 23.4.In the title compound, C 15 H 14 N 2 O 3 , the dihedral angle between the benzene rings is 66.56 (5) . In the crystal, N-HÁ Á ÁO, O-HÁ Á ÁO and C-HÁ Á ÁO interactions link the molecules into a three-dimensional network. A -interaction, with a centroid-centroid distance of 3.628 (6) Å , helps to establish the packing.
Related literature
Supercritical fluid extraction (SFE) is an innovation that permits extraction of an extensive variety of different chemical composition from the plant grids. Extraction of essential oil from Jasmine flower was tentatively carried out using the supercritical CO2 technique. The effect of extraction parameters which include pressure (100–300 bar) and temperature (300–350 K) on the oil recovery was explored. The extraction process was optimized using the response surface methodology (RSM). At the SFE optimal conditions, the chemical compositions of the extracted oil were examined using gas chromatography-mass spectrometry (GC-MS) analysis. The obtained result reflected that the optimal yield of oil from Jasmine flower was 12.18% mg oil extracted/100 g dry flower, which was achieved through an SFE optimal conditions of pressure at 200 bar and extraction temperature at 325 K. A total number of six chemical compounds were tentatively identified in the Jasmine flower extracted oil at the optimal SFE conditions.
In the title compound, C15H14N2O4, the dihedral angle between the benzene rings is 40.59 (4)° and an intramolecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O interactions link the molecules into a three-dimensional network.
The current work analyses the chemical constituents of Jasmine flower using Chromatography-Mass Spectrometry (GC-MS). The dried Jasmine flower powder was extracted by methanol via the Microwave-assisted Hydrodistillation (MAHD) process. The GC-MS analysis revealed different peaks that showed the presence of ten compounds. In the current study, we have focused on the main compounds that can be used for biological activity, i.e. 2-Phenylthiolane (57.31%), Cyclohexene, 3-ethenyl- (25.91%), Acetaldehyde (12.70%), N-Methylallylamine (9.99%), Propanamide (6.79%) and Phthalic acid, bis (7-methyloctyl) ester (5.21%). The bio-compounds with methanol extract of Jasmine flower were analyzed by using GC-MS. Functional group analysis was carried out on the volatile oil obtained through MAHD by using Fourier Transform Infrared Spectroscopy (FTIR). The surface morphologies of untreated dried powdered Jasmine flower (i.e. raw powdered jasmine flower without soaking into methanol solution prior to extraction) and pre-treated powdered Jasmine flower (soaked into methanol solution for 1 hr) were investigated through SEM analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.