Mineral oil (MO) is the most popular insulating liquid that is used as an insulating and cooling medium in electrical power transformers. Indeed, for green energy and environmental protection requirements, many researchers introduced other oil types to study the various characteristics of alternative insulating oils using advanced diagnostic tools. In this regard, natural ester oil (NEO) can be considered an attractive substitute for MO. Although NEO has a high viscosity and high dielectric loss, it presents fire safety and environmental advantages over mineral oil. Therefore, the retrofilling of aged MO with fresh NEO is highly recommended for power transformers from an environmental viewpoint. In this study, two accelerated aging processes were applied to MO for 6 and 12 days to simulate MO in service for 6 and 12 years. Moreover, these aged oils were mixed with 80% and 90% fresh NEO. The dielectric strength, relative permittivity, and dissipation factor were sensed using a LCR meter and oil tester devices for all prepared samples to support the condition assessment performance of the oil mixtures. In addition, the electric field distribution was analyzed for a power transformer using the oil mixtures. Furthermore, the dynamic viscosity was measured for all insulating oil samples at different temperatures. From the obtained results, the sample obtained by mixing 90% natural ester oil with 10% mineral oil aged for 6 days is considered superior and achieves an improvement in dielectric strength and relative permittivity by approximately 43% and 48%, respectively, compared to fresh mineral oil. However, the dissipation factor was increased by approximately 20% but was at an acceptable limit. On the other hand, for the same oil sample, due to the higher molecular weight of the NEO, the viscosities of all mixtures were at a higher level than the mineral oil.
The enhancement of the thermal properties of insulating oils has positively reflected on the performance of the electrical equipment that contains these oils. Nanomaterial science plays an influential role in enhancing the different properties of liquids, especially insulating oils. Although a minimum oil circuit breaker (MOCB) is one of the oldest circuit breakers in the electrical network, improving the insulating oil properties develops its performance to overcome some of its troubles. In this paper, 66 kV MOCB is modeled by COMSOL Multiphysics software. The internal temperature and the internally generated heat energy inside the MOCB during the making process of its contacts are simulated at different positions of the movable contact. This simulation is introduced for different modified insulating oils (mineral oil and synthetic ester oil) with different types of nanoparticles at different concentrations (0.0, 0.0025, 0.005, and 0.01 wt%). From the obtained results, it is noticed that the thermal stress on the MOCB can be reduced by the use of high thermal conductivity insulating oils. Nano/insulating oils decrease internal temperature and generate heat energy inside the MOCB by about 17.5%. The corresponding physical mechanisms are clarified considering the thermophoresis effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.