Visible light communication (VLC) has become a promising technology for high data rate communications and an attractive complementary to conventional radio frequency (RF) communication. VLC is a secure, energy efficient and cost-effective technology that exploits the existing infrastructure, particularly in indoor environments, for wireless data transmission. Nevertheless, the main limitation of developing high data rate VLC links is the narrow modulation bandwidth of light-emitting diodes (LEDs), which is in the megahertz range. The power domain nonorthogonal multiple access (PD-NOMA) scheme is envisioned to address several challenges in VLC systems. In this paper, we present a detailed overview of PD-NOMA based VLC systems. Moreover, we introduce insights on some PD-NOMA VLC system constraints and challenges such as power allocation, clipping effect, MIMO and security. Finally, we provide open research problems as well as possible directions for future research to pave the way for the implementation of PD-NOMA VLC systems.
Nowadays, visible light communication (VLC) systems have become one of the candidate technologies for high data rate indoor communications. However, the main challenge to develop a high data rate VLC system is the narrow modulation bandwidth of light-emitting diodes (LEDs). Power domain non-orthogonal multiple access (PD-NOMA) is a promising scheme to enhance the spectral efficiency of downlink VLC systems. In this paper, we introduce cooperative PD-NOMA to the system to improve the signal reception for the far users. We evaluate the bit error rate (BER) and achievable rate performance of non-cooperative and cooperative PD-NOMA under perfect channel state information (CSI). Moreover, we drive analytic expressions for the BER and provide a Monte Carlo simulation results for verifying the validity of the derived analytical BER results. The results show that cooperative PD-NOMA outperforms non-cooperative PD-NOMA by 8.2 dB at BER 10−6 and by achievable rate 14.1 bit/s/Hz at 45 dB in a two-user scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.