The study demonstrates, for the first time, an IBD-like decrease of F. prausnitzii together with an increase of E.coli in psoriasis, supporting the presence of a gut-microbiome-skin axis in psoriasis and IBD.
The prevalence of IBD in psoriasis was approximately 4 times higher than that in the general population, with the highest risk for psoriasis-PsA patients. Psoriasis-CD patients have a mild (early-onset) psoriasis but an earlier-onset and severe CD-phenotype.
Psoriatic arthritis is a chronic inflammatory joint disease, seen in combination with the chronic inflammatory skin disease psoriasis and belonging to the family of spondylarthritides (SpA). A link is recognized between psoriatic arthritis and inflammatory bowel disease (IBD). Environmental factors seem to induce inflammatory disease in individuals with underlying genetic susceptibility. The microbiome is a subject of increasing interest in the etiology of these inflammatory immune-mediated diseases. The intestinal microbiome is able to affect extra-intestinal distant sites, including the joints, through immunomodulation. At this point, evidence regarding a relationship between the microbiome and psoriatic arthritis is scarce. However, we hypothesize that common immune-mediated inflammatory pathways seen in the "skin-joint-gut axis" in psoriatic arthritis are induced or at least mediated by the microbiome. Th17 has a crucial function in this mechanism. Further establishment of this connection may lead to novel therapeutic approaches for psoriatic arthritis.
BackgroundPsoriasis and inflammatory bowel disease (IBD) are chronic inflammatory diseases sharing similar pathogenic pathways. Intestinal microbial changes such as a decrease of bakers’ yeast Saccharomyces cerevisiae have been reported in IBD, suggesting the presence of a gut-skin axis.ObjectiveTo investigate whether the S. cerevisiae abundance was altered in psoriasis patients versus healthy controls, and whether dimethylfumarate (DMF) interacted with this yeast.MethodsUsing qPCR, faecal samples were compared between psoriasis patients without DMF (n = 30), psoriasis patients with DMF (n = 28), and healthy controls (n = 32).ResultsFaecal S. cerevisiae abundance was decreased in psoriasis compared to healthy controls (p<0.001). Interestingly, DMF use raised S. cerevisiae levels (p<0.001). Gastrointestinal adverse-effects of DMF were correlated with a higher S. cerevisiae abundance (p = 0.010). In vitro, a direct effect of DMF on S. cerevisiae growth was observed. In addition, anti-Saccharomyces cerevisiae antibodies were not elevated in psoriasis.ConclusionThe abundance of baker’s yeast S. cerevisiae is decreased in psoriasis patients, but appears to be restored upon DMF use. S. cerevisiae is generally classified as a yeast with beneficial immunomodulatory properties, but may also be involved in the occurrence of DMF’s gastrointestinal adverse-effects. Potentially, DMF might be a new therapy for IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.