Rimonabant is an inverse agonist specific for cannabinoid receptors and selective for their cannabinoid-1 (CB 1 ) subtype. Although CB 1 receptors are more abundant in the central nervous system, rimonabant has many effects in the periphery, most of which are related to prejunctional modulation of transmitter release from autonomic nerves. However, CB 1 receptors are also expressed in, e.g., adipocytes and endothelial cells. Rimonabant inhibits numerous cardiovascular cannabinoid effects, including the decrease of blood pressure by central and peripheral (cardiac and vascular) sites of action, with the latter often being endothelium dependent. Rimonabant may also antagonize cannabinoid effects in myocardial infarction and in hypotension associated with septic shock or liver cirrhosis. In the gastrointestinal tract, rimonabant counteracts the cannabinoid-induced inhibition of secretion and motility. Although not affecting most cannabinoid effects in the airways, rimonabant counteracts inhibition of smoothmuscle contraction by cannabinoids in urogenital tissues and may interfere with embryo attachment and outgrowth of blastocysts. It inhibits cannabinoid-induced decreases of intraocular pressure. Rimonabant can inhibit proliferation of, maturation of, and energy storage by adipocytes. Among the many cannabinoid effects on hormone secretion, only some are rimonabant sensitive. The effects of rimonabant on the immune system are not fully clear, and it may inhibit or stimulate proliferation in several types of cancer. We conclude that direct effects of rimonabant on adipocytes may contribute to its clinical role in treating obesity. Other peripheral effects, many of which occur prejunctionally, may also contribute to its overall clinical profile and lead to additional indications as well adverse events.
Mutations in USH2A, encoding usherin, are the most common cause of syndromic and non-syndromic retinitis pigmentosa (RP). The two founder mutations in exon 13 (c.2299delG and c.2276G>T) collectively account for ~34% of USH2A-associated RP cases. Skipping of exon 13 from the USH2A transcript during pre-mRNA splicing presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in larvae of the previously published ush2a exon 13 zebrafish mutant resulted in the production of usherinΔexon13 and completely restored retinal function. RNA antisense oligonucleotides were investigated for their potential to specifically induce human USH2A exon 13 skipping. Lead candidate QR-421a induced dose-dependent exon 13 skipping in iPSC-derived photoreceptor precursors from a patient homozygous for the USH2A c.2299delG mutation. Intravitreal delivery of QR-421a in non-human primates showed that QR-421a penetrates the retinal outer nuclear layer and induces detectable levels of exon 13 skipping until at least 3 months post injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment for RP caused by mutations in exon 13 of the USH2A gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.