Object detection in remote sensing images has been widely used in military and civilian fields and is a challenging task due to the complex background, large-scale variation, and dense arrangement in arbitrary orientations of objects. In addition, existing object detection methods rely on the increasingly deeper network, which increases a lot of computational overhead and parameters, and is unfavorable to deployment on the edge devices. In this paper, we proposed a lightweight keypoint-based oriented object detector for remote sensing images. First, we propose a semantic transfer block (STB) when merging shallow and deep features, which reduces noise and restores the semantic information. Then, the proposed adaptive Gaussian kernel (AGK) is adapted to objects of different scales, and further improves detection performance. Finally, we propose the distillation loss associated with object detection to obtain a lightweight student network. Experiments on the HRSC2016 and UCAS-AOD datasets show that the proposed method adapts to different scale objects, obtains accurate bounding boxes, and reduces the influence of complex backgrounds. The comparison with mainstream methods proves that our method has comparable performance under lightweight.
Remote sensing image scene classification has become more and more popular in recent years. As we all know, it is very difficult and time-consuming to obtain a large number of manually labeled remote sensing images. Therefore, few-shot scene classification of remote sensing images has become an urgent and important research task. Fortunately, the recently proposed deep nearest neighbor neural network (DN4) has made a breakthrough in few-shot classification. However, due to the complex background in remote sensing images, DN4 is easily affected by irrelevant local features, so DN4 cannot be directly applied in remote sensing images. For this reason, a deep nearest neighbor neural network based on attention mechanism (DN4AM) is proposed to solve the few-shot scene classification task of remote sensing images in this paper. Scene class-related attention maps are used in our method to reduce interference from scene-semantic irrelevant objects to improve the classification accuracy. Three remote sensing image datasets are used to verify the performance of our method. Compared with several state-of-the-art methods, including MatchingNet, RelationNet, MAML, Meta-SGD and DN4, our method achieves promising results in the few-shot scene classification of remote sensing images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.