Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.
Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia.
SummaryHyposalivation often leads to irreversible and untreatable xerostomia. Salivary gland (SG) stem cell therapy is an attractive putative option to salvage these patients but is impeded by the limited availability of adult human tissue. Here, using murine SG cells, we demonstrate single-cell self-renewal, differentiation, enrichment of SG stem cells, and robust in vitro expansion. Dependent on stem cell marker expression, SG sphere-derived single cells could be differentiated in vitro into distinct lobular or ductal/lobular organoids, suggestive of progenitor or stem cell potency. Expanded cells were able to form miniglands/organoids containing multiple SG cell lineages. Expansion of these multipotent cells through serial passaging resulted in selection of a cell population, homogenous for stem cell marker expression (CD24hi/CD29hi). Cells highly expressing CD24 and CD29 could be prospectively isolated and were able to efficiently restore radiation-damaged SG function. Our approach will facilitate the use of adult SG stem cells for a variety of scientific and therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.