To establish a possible role for the natural environment in the transmission of clinically relevant AMR bacteria to humans, a literature review was conducted to systematically collect and categorize evidence for human exposure to extended-spectrum β-lactamase-producing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus spp. in the environment. In total, 239 datasets adhered to inclusion criteria. AMR bacteria were detected at exposure-relevant sites (35/38), including recreational areas, drinking water, ambient air, and shellfish, and in fresh produce (8/16). More datasets were available for environmental compartments (139/157), including wildlife, water, soil, and air/dust. Quantitative data from exposure-relevant sites (6/35) and environmental compartments (11/139) were scarce. AMR bacteria were detected in the contamination sources (66/66) wastewater and manure, and molecular data supporting their transmission from wastewater to the environment (1/66) were found. The abundance of AMR bacteria at exposure-relevant sites suggests risk for human exposure. Of publications pertaining to both environmental and human isolates, however, only one compared isolates from samples that had a clear spatial and temporal relationship, and no direct evidence was found for transmission to humans through the environment. To what extent the environment, compared to the clinical and veterinary domains, contributes to human exposure needs to be quantified. AMR bacteria in the environment, including sites relevant for human exposure, originate from contamination sources. Intervention strategies targeted at these sources could therefore limit emission of AMR bacteria to the environment.
OKT3/IL-2 resulted in T cell activation and proliferation, and could stimulate HIV replication in patients having achieved prolonged suppression of plasma viremia. OKT3/IL-2 therapy was toxic and rapidly induced antibodies against OKT3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.