Enteroviruses (EV) and human parechoviruses (HPeV) are endemic worldwide. These infections are a constant cause of hospitalisation and severe disease, predominantly in young children and infants. Coordinated monitoring and surveillance are crucial to control these infections. We have monitored EV and HPeV epidemiology in Amsterdam from 2007 to 2011 with real-time RT-PCR and direct genotyping, facilitating highly sensitive surveillance. Moreover, we conducted a literature survey of existing surveillance data for comparison. Only 14 studies were identified. While HPeV1 was most frequently detected in Amsterdam, EV-B viruses dominated nationally and internationally. Furthermore, the top 10 strains detected differed yearly and per study. However, detection and typing methods were too varied to allow direct comparison and comprehension of the worldwide distribution and circulation patterns of the different genotypes. This limited a direct response to anticipate peaks. Uniform European monitoring programmes are essential to aid prediction of outbreaks and disease management.
Human parechoviruses (HPeVs), a poorly studied genus within the Picornaviridae family, are classified into 19 genotypes of which HPeV1 and HPeV3 are the most often detected. HPeV1 VP1 C terminus contains an arginine-glycine-aspartic acid (RGD) motif and has been shown to depend on the host cell surface αV integrins (αV ITGs) and heparan sulfate (HS) for entry. HPeV3 lacks this motif and the receptors remain unknown. HPeVs can be detected in patient nasopharyngeal and stool samples, and infection is presumed to occur after respiratory or gastro-intestinal transmission. HPeV pathogenesis is poorly understood as there are no animal models and previous studies have been conducted in immortalized monolayer cell cultures which do not adequately represent the characteristics of human tissues. To bridge this gap, we determined the polarity of infection, replication kinetics, and cell tropism of HPeV1 and HPeV3 in the well-differentiated human airway epithelial (HAE) model. We found the HAE cultures to be permissive for HPeVs. Both HPeV genotypes infected the HAE preferentially from the basolateral surface while the progeny virus was shed toward the apical side. Confocal microscopy revealed the target cell type to be the p63+ basal cells for both viruses, αV ITG and HS blocking had no effect on the replication of either virus, and transcriptional profiling suggested that HPeV3 infection induced stronger immune activation than HPeV1. Genotype-specific host responses may contribute to the differences in pathogenesis and clinical outcomes associated with HPeV1 and HPeV3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.