Proper longitudinal growth of long bones relies on the regulation of specific spatial patterns of chondrocyte proliferation and differentiation. We have studied the roles of two members of the Wnt family, Wnt5a and Wnt5b in long bone development. We show that Wnt5a is required for longitudinal skeletal outgrowth and that both Wnt5a and Wnt5b regulate the transition between different chondrocyte zones independently of the Indian hedgehog (Ihh)/parathyroid hormone-related peptide (PTHrP) negative feedback loop. We find that important cell cycle regulators such as cyclin D1 and p130, a member of the retinoblastoma family, exhibit complimentary expression patterns that correlate with the distinct proliferation and differentiation states of chondrocyte zones. Furthermore, we show that Wnt5a and Wnt5b appear to coordinate chondrocyte proliferation and differentiation by differentially regulating cyclin D1 and p130 expression, as well as chondrocyte-specific Col2a1 expression. Our data indicate that Wnt5a and Wnt5b control the pace of transitions between different chondrocyte zones.
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.
The eye/antennal discs of Drosophila form most of the adult head capsule. We are analyzing the role of the BMP family member decapentaplegic (dpp) in the process of head formation, as we have identified a class of cis-regulatory dpp mutations (dpp s-hc ) that specifically disrupts expression in the lateral peripodial epithelium of eye/antennal discs and is required for ventral head formation. Here we describe the recovery of mutations in odd-paired (opa), a zinc finger transcription factor related to the vertebrate Zic family, as dominant enhancers of this dpp head mutation. A single loss-of-function opa allele in combination with a single copy of a dpp s-hc produces defects in the ventral adult head. Furthermore, postembryonic loss of opa expression alone causes head defects identical to loss of dpp, and dpp hc /+;opa/+ mutant combinations. opa is required for dpp expression in the lateral peripodial epithelium, but not other areas of the eye/antennal disc. Thus a pathway that includes opa and dpp expression in the peripodial epithelium is crucial to the formation of the ventral adult head. Zic proteins and members of the BMP pathway are crucial for vertebrate head development, as mutations in them are associated with midline defects of the head. The interaction of these genes in the morphogenesis of the fruitfly head suggests that the regulation of head formation may be conserved across metazoans.
We previously showed that the Drosophila DNA binding homeodomain of Prospero included a 28 amino-acid sequence (HDA) that functions as a nuclear export signal. We describe here the identification of a protein we named Caliban, which can directly interact with the HDA. Caliban is homologous to human Sdccag1, which has been implicated in colon and lung cancer. Here we show that Caliban and Sdccag1 are mediators of nuclear export in fly and human cells, as interference RNA abrogates export of EYFP-HDA in normal fly and human lung cells. Caliban functions as a bipartite mediator nuclear export as the carboxy terminus binds HDA and the amino terminus itself functions as an NES, which directly binds the NES receptor Exportin. Finally, while non-cancerous lung cells have functional Sdccag1, five human lung carcinoma cell lines do not, even though Exportin still functions in these cells. Expression of fly Caliban in these human lung cancer cells restores EYFP-HDA nuclear export, reduces a cell's ability to form colonies on soft agar and reduces cell invasiveness. We suggest that Sdccag1 inactivation contributes to the transformed state of human lung cancer cells and that Caliban should be considered a candidate for use in lung cancer gene therapy.
The gene odd paired (opa), a Drosophila homolog of the Zinc finger protein of the cerebellum (Zic) family of mammalian transcription factors, plays roles in embryonic segmentation and development of the adult head. We have determined the preferred DNA binding sequence of Opa by SELEX and shown that it is necessary and sufficient to activate transcription of reporter gene constructs under Opa control in transgenic flies. We have found a related sequence in the enhancer region of an opa-responsive gene, sloppy paired 1. This site also responds to Opa in reporter constructs in vivo. However, nucleotide alterations that abolish the ability of Opa to bind this site in vitro have no effect on the ability of Opa to activate expression from constructs bearing these mutations in vivo. These data suggest that while Opa can function in vivo as a sequence specific transcriptional regulator, it does not require DNA binding for transcriptional activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.