In bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes. Interestingly, NFI-C controls postnatal bone formation but does not influence prenatal bone development. We also found decreased NFI-C expression in osteogenic cells from human osteoporotic patients. Notably, transplantation of Nfic-overexpressing BMSCs stimulates osteoblast differentiation and new bone formation, but inhibits adipocyte differentiation by suppressing peroxisome proliferator-activated receptor gamma expression in Nfic 2/2 mice showing an age-related osteoporosis-like phenotype. Finally, NFI-C directly regulates Osterix expression but acts downstream of the bone morphogenetic protein-2-Runx2 pathway. These results suggest that NFI-C acts as a transcriptional switch in cell fate determination between osteoblast and adipocyte differentiation in BMSCs. Therefore, regulation of NFI-C expression in BMSCs could be a novel therapeutic approach for treating agerelated osteoporosis.
Formononetin, a phytoestrogen extracted from various herbal plants, has been investigated as an anticancer agent against diverse types of cancer. The aim of the present study was to investigate the induction of apoptotic cell death by formononetin in the FaDu pharyngeal squamous cell carcinoma cell line. Formononetin significantly increased FaDu cell death, with an estimated IC 50 value of 50 µM; however, it did not affect the viability of normal L929 mouse fibroblasts used as normal control at 5-25 µM. Typical characteristics of apoptosis, such as morphological alterations, chromatin condensation, DNA fragmentation and the size of the apoptotic cell population, were increased in FaDu cells treated with formononetin for 24 h. Furthermore, formononetin-induced FaDu cell death involved the death receptor-mediated extrinsic and the mitochondria-dependent intrinsic apoptotic pathways by activating the caspase cascade. The chemotherapeutic effects of formononetin were mediated by the suppression of mitogen-activated protein kinases, including extracellular signal-regulated kinase 1/2 and p38, and nuclear factor-κB phosphorylation in FaDu cells. Finally, the oral administration of formononetin decelerated tumor growth through the expression of cleaved caspase-3 in a FaDu cell xenograft animal model. Taken together, these findings indicate that formononetin holds promise as a chemotherapeutic agent and may be of value in the treatment of human head and neck squamous cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.