Atopic dermatitis (AD) is a common inflammatory skin disease, which can be worsened under sleep deprivation (SD) conditions. This study investigated the efficacy and the mechanism of action of the traditional herbal formula Seungmagalgeun-tang (SMGGT) on the inflammation and behavioral changes in a mouse model of AD exposed to SD. SMGGT decreased levels of IgE, TNF-α, IL-4, IL-13, and mast cell infiltration and reduced the expression of CD3 in the mouse skin. SMGGT also reversed the SD-induced increase in corticosterone and decrease in melatonin level. Furthermore, SMGGT reduced the immobility time in the tail suspension test significantly. HaCaT cells and HMC-1 cells were used to investigate the effects of SMGGT on cell signaling pathways. In TNF-α/IFN-γ (TI) treated HaCaT cells, SMGGT reduced production of TARC/CCL17 and MDC/CCL22 and suppressed the p38 MAPK, STAT1, and NF-κB pathways. In substance P (SP)/CRH-stimulated HMC-1 cells, SMGGT decreased VEGF production and inhibited ERK phosphorylation. Network pharmacology and molecular docking analysis revealed that puerarin and paeoniflorin might contribute to the effects of SMGGT by targeting several AD-related molecules and pathways. Puerarin and paeoniflorin exerted anti-inflammatory effects by decreasing production of MDC/CCL22 and IL-6 in TI-treated HaCaT cells and VEGF production in SP/CRH-stimulated HMC-1 cells. This study suggests that SMGGT with puerarin and paeoniflorin as main bioactive components alleviates skin inflammation and depression-like behavior in a sleep-deprived mouse model of AD.
Aromatherapy is one of the most common safer alternative treatments for psychiatric disorders with fewer side effects than conventional drugs. Here, we investigated the effects of cinnamon essential oil (CIEO) inhalation on mouse behaviors by performing different behavioral tests. CIEO inhalation showed anxiolytic effects in the elevated plus maze test, as inferred from increased time spent in open arms and decreased time spent in closed arms. Moreover, the CIEO treatment enhanced social behavior by increasing the total contact number, time spent in the center, distance traveled in the center, and total distance in the social interaction test. However, CIEO inhalation did not have any effect on performance in the open field test, tail suspension test, forced swimming test, and Y maze tests. The microarray analysis indicated that the CIEO treatment downregulated 17 genes and upregulated 15 genes in the hippocampus. Among them, Dcc, Egr2, and Fos are the most crucial genes that are involved in anxiety-related biological processes and pathways, including the regulation of neuronal death and neuroinflammation. Gas chromatography/mass spectrometry analysis revealed that cinnamaldehyde is the main component of CIEO. Cinnamaldehyde recovered MK-801-induced anxiety-related changes in the electroencephalogram power spectrum in zebrafish. Taken together, our findings suggest that CIEO and its main component cinnamaldehyde have an anxiolytic effect through the regulation of the expression of genes related to neuroinflammatory response and neuronal death.
Atractylodes lancea (Thunb.) DC. (AL) has been indicated in traditional prescriptions for the treatment of depression. However, the mechanism of action of AL in the treatment of depression is still unclear. This study aimed to investigate the antidepressant potential of AL using network pharmacology, molecular docking, and animal experiments. The active components of AL were retrieved from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and the depression-related targets were screened through the DisGeNET database. Overlapping targets of AL and depression were selected and analyzed. Ten active compounds of AL showed anti-depressant potential, including stigmasterol, 3β-acetoxyatractylone, wogonin, β-sitosterol, selina-4(14),7(11)-dien-8-one, atractylenolide I, atractylenolide II, atractylenolide III, patchoulene, and cyperene. These compounds target 28 potential antidepressant genes/proteins. Gene Ontology (GO) enrichment analysis revealed that the potential targets might directly influence neural cells and regulate neuroinflammation and neurotransmitter-related processes. The potential Kyoto Encyclopedia Genes and Genomes (KEGG) pathways for the antidepressant effects of AL include neuroactive ligand–receptor interactions, calcium signaling pathways, dopaminergic synapse, interleukin (IL)-17 signaling pathways, and the pathways of neurodegeneration. IL-6, nitric oxide synthase 3 (NOS), solute carrier family 6 member 4 (SLC6A4), estrogen receptor (ESR1), and tumor necrosis factor (TNF) were the most important proteins in the protein–protein interaction network and these proteins showed high binding affinities with the corresponding AL compounds. AL showed an antidepressant effect in mice by decreasing immobility time in the tail suspension test and increasing the total contact number in the social interaction test. This study demonstrated the antidepressant potential of AL, which provides evidence for pursuing further studies to develop a novel antidepressant.
Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100–2000 mg/kg for mice or 2–32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10−6–10−3 mg/cage or 10−9–10−2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.
Psychological stress is a major exacerbating factor of atopic dermatitis (AD), a chronic in ammatory skin disease. Sopoongsan (SPS), a traditional herbal formula, has been indicated for the treatment of various skin disorders, including AD. is study investigated the e ects of SPS on a 2,4-dinitrochlorobenzene-(DNCB-) induced AD mice model exposed to social isolation (SI) stress. e severity of the AD symptoms and behavioral abnormalities was evaluated. SPS reduced the clinical skin score as evaluated with the SCORing Atopic Dermatitis (SCORAD) index and suppressed the cutaneous in ltration of T-lymphocyte cells, mast cells, and eosinophils in SI-AD mice. e SPS treatment decreased the total distance and mean speed and increased resting time in the open eld test (OFT) for these mice. In addition, the time spent in the social zone in the social interaction test also improved when SPS treatment was given. e levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the prefrontal cortex (PFC) in the SI-AD mice were reduced by the oral administration of SPS. HaCaT and BV2 cells were used for the in vitro experiments. e pretreatment with SPS reduced the protein levels of the thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) in the HaCaT cells stimulated with TNF-α and interferon-gamma (IFN-c) (TI). SPS also suppressed TNF-α and IL-6 secretion in lipopolysaccharide-(LPS-) stimulated BV2 cells. ese results imply that SPS could be a promising candidate for the treatment of AD in patients under stress conditions and at risk of exacerbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.