Fitness is at the core of evolutionary theory, but it is difficult to measure accurately. One way to measure long-term fitness is by calculating the individual’s reproductive value, which represents the expected number of allele copies an individual passes on to distant future generations. However, this metric of fitness is scarcely used because the estimation of individual’s reproductive value requires long-term pedigree data, which is rarely available in wild populations where following individuals from birth to death is often impossible. Wild study systems therefore use short-term fitness metrics as proxies, such as the number of offspring produced. This study compared two frequently used short-term metrics for fitness obtained at different offspring life stages (eggs, hatchlings, fledglings and recruits), and compared their ability to predict reproductive values derived from the genetic pedigree of a wild passerine bird population. We used twenty years of precise field observations and a near-complete genetic pedigree to calculate reproductive success, individual growth rate and de-lifed fitness as lifetime fitness measures, and as annual de-lifed fitness. We compared the power of these metrics to predict reproductive values and lineage survival to the end of the study period. The three short-term fitness proxies predict the reproductive values and lineage survival only when measured at the recruit stage. There were no significant differences between the different fitness proxies at the same offspring stages in predicting the reproductive values and lineage survival. Annual fitness at one year old predicted reproductive values equally well as lifetime de-lifed fitness. However, none of the short-term fitness proxies were strongly associated with the reproductive values. The commonly used short-term fitness proxies best predict long-term fitness when measured at recruitment stage. Thus, because lifetime fitness measured at recruit stage and annual fitness in the first year of life were the best proxies of long-term fitness in short-lived birds, we encourage their future use.
Telomere dynamics are linked with both cellular and organismal senescence, and life history, individual quality and health. Telomere dynamics, particularly telomere length, have therefore garnered much research interest in evolutionary biology. To examine the evolution of telomere length, it is important to quantify its heritability,
Animal sociality, an individual’s propensity to associate with others, has fitness consequences through mate choice, for example, directly, by increasing the pool of prospective partners, and indirectly through increased survival, and individuals benefit from both. Annually, fitness consequences are realized through increased mating success and subsequent fecundity. However, it remains unknown whether these consequences translate to lifetime fitness. Here, we quantified social associations and their link to fitness annually and over lifetime, using a multi-generational, genetic pedigree. We used social network analysis to calculate variables representing different aspects of an individual’s sociality. Sociality showed high within-individual repeatability. We found that birds with more opposite-sex associates had higher annual fitness than those with fewer, but this did not translate to lifetime fitness. Instead, for lifetime fitness, we found evidence for stabilizing selection on opposite-sex sociality, and sociality in general, suggesting that reported benefits are only short-lived in a wild population, and that selection favors an average sociality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.