The dynamic metamorphism of tectonically deformed coals (TDCs) is closely correlated with the occurrence of coalbed methane. Here, a Raman detection technique was used to characterize two primary coals and 14 TDCs sampled from the Huaibei coalfield, allowing for profound insight into the dynamic metamorphism caused by tectonic stress in coals. A nine-peak curve fitting method was applied to deconvolute the first-order Raman spectra, and six structural parameters were used to characterize the hierarchical evolution of TDC molecules. The lower A S/A Total and A S/A D ratios in TDCs indicate that the cross-links in secondary and aggregated (outer) structures are cleaved by tectonic stress. Once the aromatic structures are released through the cleavage of cross-links, the outer structures can be rearranged into a more ordered configuration, as indicated by the higher I G/I A2 ratio in TDCs. Additionally, the basic structural units (including aromatic structures and side chains) in TDC are also altered by stress. The increasing values of A D/A G and A (D+A1+A2)/A Ds illustrate that the size of aromatic structures and the ratio of small aromatic structures both increase with increasing coal deformation intensity. The value of A C/A Total decreases with increasing deformation intensity, indicating that oxygen functional groups are disassociated by tectonic stress. However, as the basic structural units are commonly rigid and cannot be altered as readily as the outer structures, the evolution of basic structural units is not always obvious in weakly deformed coals (such as cataclastic, mortar, and schistose types) but is more significant in strongly deformed coals (such as granulitic, scaly, and wrinkle types).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.