To increase the output power of microstrip line traveling-wave tubes, a staggered rings microstrip line (SRML) slow-wave structure (SWS) based on a U-shaped mender line (U-shaped ML) SWS and a ring-shaped microstrip line (RML) SWS has been proposed in this paper. Compared with U-shaped ML SWS and RML SWS, SRML SWS has a wider transverse width, which means SRML SWS has a larger area for beam–wave interaction. The simulation results show that SRML SWS has a wider bandwidth than U-shaped ML SWS and a lower phase velocity than RML SWS. Input/output couplers, which consist of microstrip probes and transition sections, have been designed to transmit signals from a rectangular waveguide to the SWS; the simulation results present that the designed input/output structure has good transmission characteristics. Particle-in-cell (PIC) simulation results indicate that the SRML TWT has a maximum output of 322 W at 32.5 GHz under a beam voltage of 9.7 kV and a beam current of 380 mA, and the corresponding electronic efficiency is around 8.74%. The output power is over 100 W in the frequency range of 27 GHz to 38 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.