<p><span>In optical networks, Dense wavelength division multiplexing (DWDM) has been considered as a promising technique to meet the increasing bandwidth demands. It has been used to increase the capacity of long-haul optical transport systems such as free-space optics (FSO) and optical fiber. However, by applying DWDM over the FSO link, different challenges affect the performance system such as clear air, haze and rain atmospheric attenuations. This paper investigates eleven-channel DWDM over FSO based on the electrical linear equalizer that will improve the performance results at the receiver. The channels operate over (1561.42 nm, 1559.79 nm, 1558.17 nm, 1558.55 nm, 1554.94 nm, 1553.33 nm, 1551.72 nm, 1550.12 nm, 1548.51 nm, 1546.92 and 1545.32 nm) wavelengths that have separated based on the traditional International Telecommunication Union (ITU) grid. In the experiments, the system transmits 110 Gbit/s for FSO distances 9500 m, 3000 m, and 2500 m in superbly clear air, haze, and heavy haze atmospheric attenuations, respectively. Over different atmospheric attenuations, we evaluated our system performance using BER, eye diagram and the quality factor (Q-Factor). </span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.