This paper introduces Opencpop, a publicly available highquality Mandarin singing corpus designed for singing voice synthesis (SVS). The corpus consists of 100 popular Mandarin songs performed by a female professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100 Hz and the corresponding lyrics and musical scores are provided. All singing recordings have been phonetically annotated with phoneme boundaries and syllable (note) boundaries. To demonstrate the reliability of the released data and to provide a baseline for future research, we built baseline deep neural network-based SVS models and evaluated them with both objective metrics and subjective mean opinion score (MOS) measure. Experimental results show that the best SVS model trained on our database achieves 3.70 MOS, indicating the reliability of the provided corpus. Opencpop is released to the open-source community WeNet 1 , and the corpus, as well as synthesized demos, can be found on the project homepage 2 .
In this paper, we propose VISinger, a complete end-to-end highquality singing voice synthesis (SVS) system that directly generates audio waveform from lyrics and musical score. Our approach is inspired by VITS [1], which adopts VAE-based posterior encoder augmented with normalizing flow based prior encoder and adversarial decoder to realize complete end-to-end speech generation. VISinger follows the main architecture of VITS, but makes substantial improvements to the prior encoder based on the characteristics of singing. First, instead of using phoneme-level mean and variance of acoustic features, we introduce a length regulator and a frame prior network to get the frame-level mean and variance on acoustic features, modeling the rich acoustic variation in singing. Second, we further introduce an F0 predictor to guide the frame prior network, leading to stabler singing performance. Finally, to improve the singing rhythm, we modify the duration predictor to specifically predict the phoneme to note duration ratio, helped with singing note normalization. Experiments on a professional Mandarin singing corpus show that VISinger significantly outperforms FastSpeech+Neural-Vocoder two-stage approach and the oracle VITS; ablation study demonstrates the effectiveness of different contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.