The high transmissibility, mortality, and morbidity rate of the SARS-CoV-2 Delta (B.1.617.2) variant have raised concerns regarding vaccine effectiveness (VE). To address this issue, all publications relevant to the effectiveness of vaccines against the Delta variant were searched in the Web of Science, Scopus, EMBASE, and Medline (via PubMed) databases up to 15 October 2021. A total of 15 studies (36 datasets) were included in the meta-analysis. After the first dose, the VE against the Delta variant for each vaccine was 0.567 (95% CI 0.520–0.613) for Pfizer-BioNTech, 0.72 (95% CI 0.589–0.822) for Moderna, 0.44 (95% CI 0.301–0.588) for AstraZeneca, and 0.138 (95% CI 0.076–0.237) for CoronaVac. Meta-analysis of 2,375,957 vaccinated cases showed that the Pfizer-BioNTech vaccine had the highest VE against the infection after the second dose, at 0.837 (95% CI 0.672–0.928), and third dose, at 0.972 (95% CI 0.96–0.978), as well as the highest VE for the prevention of severe infection or death, at 0.985 (95% CI 0.95–0.99), amongst all COVID-19 vaccines. The short-term effectiveness of vaccines, especially mRNA-based vaccines, for the prevention of the Delta variant infection, hospitalization, severe infection, and death is supported by this study. Limitations include a lack of long-term efficacy data, and under-reporting of COVID-19 infection cases in observational studies, which has the potential to falsely skew VE rates. Overall, this study supports the decisions by public health decision makers to promote the population vaccination rate to control the Delta variant infection and the emergence of further variants.