To investigate the adsorption properties of methane in coal under low temperatures, the isothermal adsorption tests of the three coal samples with different metamorphic degrees were conducted at the ambient temperatures of 253.15−293.15 K, and the low‐temperature nitrogen adsorption (LNA) tests of coal were also performed. Then a relational expression of equilibrium pressure, temperature, and methane adsorption capacity (T−P model) was deduced to predict the adsorption isotherm at any other temperature based on the Polanyi adsorption theory. The results show that the gas adsorption capacity of coal can be significantly increased at low temperatures (below 273.15 K), and the adsorbed methane in anthracite is obviously more than that in lean coal and coking coal by the virtue of possessing a larger micropore/transition pore volume and specific surface area. The relations between adsorption potential (ε) and adsorption volume (ω) at different temperatures can be drawn on one single logarithmic curve, and a suitable pseudo‐saturation pressure can be obtained by the improved Amankwah's method. The predicted adsorbed capacities via the T−P model are in line with the measured results at other equilibrium conditions, indicating that the model can contribute to the deep coalbed methane resources estimation and the gas disaster prevention and control in coal mines.
As a two-dimensional (2D) layered semiconductor, lead iodide (PbI2) has been widely used in optoelectronics owing to its unique crystal structure and distinctive optical and electrical properties. A comprehensive understanding of its optical performance is essential for further application and progress. Here, we synthesized regularly shaped PbI2 platelets using the chemical vapor deposition method. Raman scattering spectroscopy of PbI2 platelets was predominantly enhanced when the laser radiated at the edge according to Raman mapping spectroscopy. Combining the outcome of polarized Raman scattering spectroscopy and finite-difference time domain simulation analysis, the Raman enhancement was proven to be the consequence of the enhancement effects inherent to the high refractive index contrast waveguide, which is naturally formed in well-defined PbI2 platelets. Because of the enlarged excited area determined by the increased propagation length of the laser in the PbI2 platelet formed waveguide, the total Raman enhancements are acquired rather than a localized point enhancement. Finally, the Raman enhancement factor is directly related to the thickness of the PbI2 platelet, which further confirms the waveguide-enhanced edge Raman. Our investigation of the optical properties of PbI2 platelets offers reference for potential 2D layered-related optoelectronic applications.
During a freezing method for rock crosscut coal uncovering (RCCU), the mechanical properties of the frozen coal–rock interface have a significant impact on coal-body stability. To investigate characteristic and development mechanism of freezing strength of frozen coal–rock interface, a series of direct shear tests were conducted on frozen coal–rock interface under various testing temperatures, moisture contents in coal and normal stresses. The test results showed that the strength of the frozen coal–rock interface was affected by the moisture content in coal. The larger the moisture content was, the greater strength of the interface was. When the testing temperature was −10°C, the freezing strength increased from 75.46 to 267.42 kPa with the moisture content increasing from 3% to 9%. The ice cementing strength at the interface also increased with testing temperature decreasing. It increased from 6.44 to 73.34 kPa with the testing temperature decreasing from −2°C to −10°C when the moisture content was 5% and the normal stress was 200 kPa. With the increase of normal stress, the residual strength of the frozen coal–rock interface increased. When the moisture content in coal was 9% and the testing temperature was −10°C, the residual strength of the interface increased from 40.68 to 132.28 kPa with the normal stress increasing from 100 to 400 kPa. The testing temperature had no obvious influence on the friction coefficient and the cohesion of residual strength. When the moisture content in coal was 5%, the cohesion of residual strength increased from 23.39 to 98.7 kPa and the friction coefficient of residual strength fluctuated between 0.49 and 0.63 with the testing temperature decreasing from −2°C to −10°C. The relationship between the shear strength and the normal stress followed the Mohr–Coulomb law.
Based on artificial freezing engineering practice, the comprehensive technology is suggested to realize safe and fast rock cross-cut coal uncovering, which mainly includes four steps of drilling, water injection wetting coal, gas drainage, and injection liquid nitrogen into coal seam. Freezing test of liquid nitrogen injection into coal is carried out to obtain the cooling curves, and comparing the test results, the numerical inverse method is applied to determine the thermal conductivity of coal seam. Then, the model of injecting liquid nitrogen into coal seam is established to simulate and analyze the aging characteristic of effective freezing radius. The results show that the thermal conductivity of wetting coal increases linearly with temperature decreasing. The periodic method with 8h intervals can be adopted to inject liquid nitrogen into coal seam, and the freezing wall is formed around the injection hole. With the increase of freezing time, the effective freezing radius (below 273.15 K) increases by power exponent, and the freezing speed in coal seam decreases gradually. This result will provide a theoretical basis for layout optimization of injection holes in rock cross-cut coal uncovering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.