Graphene oxide‐based nanomaterials are promising for enzyme immobilization due to the possibilities of functionalizing surface. Polyethylenimine‐grafted graphene oxide was constructed as a novel scaffold for immobilization of formate dehydrogenase. Compared with free formate dehydrogenase and graphene oxide adsorbed formate dehydrogenase, thermostability, storage stability, and reusability of polyethylenimine‐grafted graphene oxide‐formate dehydrogenase were enhanced. Typically, polyethylenimine‐grafted graphene oxide‐formate dehydrogenase remained 47.4% activity after eight times’ repeat reaction. The immobilized capacity of the polyethylenimine‐grafted graphene oxide was 2.4‐folds of that of graphene oxide. Morphological and functional analysis of polyethylenimine‐grafted graphene oxide‐formate dehydrogenase was performed and the assembling mechanism based on multi‐level interactions was studied. Consequently, this practical and facile strategy will likely find applications in biosynthesis, biosensing, and biomedical engineering.
Chiral amines are key building blocks for pharmaceuticals. Economic assessment of commercial potential of bioprocesses is needed for guiding research. Biosynthesis of (S)-α-methylbenzylamine (MBA) was selected as case study. For transamination route, transaminase coupled with glucose dehydrogenase and lactate dehydrogenase catalyzed the reaction with NADH (Nicotinamide adenine dinucleotide) regeneration. Amine dehydrogenase coupled with NADH oxidase, which catalyzed the reductive amination process. Comparison of biosynthesis cost by reductive amination and transamination routes was carried out. Economic assessment based on the framework of cost analysis and preliminary process information revealed that cost is greatly dependent on enzyme price. The results indicated that enhancing the activity of amine dehydrogenase by 4–5 folds can drop the unit price of reductive amination to $0.5–0.6/g, which make it competitive with transamination route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.