In this study, we propose a computational fluid dynamics (CFD)-based method to study the lubrication and temperature characteristics of an intermediate gearbox with splash lubrication. A volume of fluid (VOF) multiphase model was used to track the interface between oil and air. A multiple reference frame (MRF) model was adopted to accurately simulate the movement characteristics of the gears, bearings, and the surrounding flow field. The thermal-fluid coupling computational model of an intermediate gearbox with splash lubrication was then established. Combined with experimental results, we verified that the lubricating oil temperature was below the limit requirement (<110 °C). The numerical results revealed that large amounts of lubricating oil were splashed onto the tooth surfaces near the gear meshing area. A large convective heat transfer coefficient corresponds to a low gear tooth surface temperature. The tooth surface temperature of the driving gear is higher than that of the driven gear. The distribution law of oil volume fraction of the bearing roller was jointly affected by the roller rotation direction and gravity. The convective heat transfer coefficient of the roller wall was largely related to the lubrication environment of the roller, including the oil distribution inside the bearing cavity and the flow rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.