The multi-power face gear split flow system is a new type of transmission system, which has the advantages of stable and reliable transmission and strong carrying capacity. And it has great potential in the application of helicopter transmission systems. In this paper, the multi-power face gear split flow system was taken as the research object. Based on the lumped parameter method and Newton’s second law, the translational-torsional dynamic model of the system was established considering the translational vibration and the torsional vibration of the gears, and the meshing force curves and load-sharing coefficient curves were drawn. At the same time, the factors affecting the load-sharing characteristics of the transmission system were studied. The impacts of manufacturing errors, assembly errors, manufacturing error phases, assembly error phases, meshing damping, support stiffness, and the input power on the load-sharing coefficients were analyzed. The research shows that the errors and error phases of spur gears have small impacts on the load-sharing coefficients, while the support stiffness of spur gears has a great impact on the load-sharing coefficients. The errors and error phases of face gears have small impacts on the load-sharing coefficients, while the support stiffness of spur gears has a great impact on the load-sharing coefficients. The load-sharing coefficients increase constantly with the increase in the meshing damping between face gears and spur gears, whereas the load-sharing coefficients decrease constantly with the increase in the input power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.